Trójkąty na rysunku obok są równoboczne, a okrąg ma promień 10. - Zadanie 35: Matematyka z plusem 2 - strona 67
Matematyka
Wybierz książkę
Trójkąty na rysunku obok są równoboczne, a okrąg ma promień 10. 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Trójkąty na rysunku obok są równoboczne, a okrąg ma promień 10.

29
 Zadanie
30
 Zadanie
31
 Zadanie
32
 Zadanie
33
 Zadanie
34
 Zadanie

35
 Zadanie

36
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Mamy R=10. Przez H oznaczmy wysokość dużego trójkąta równoboczneho o boku b. Przez h oznaczmy wysokość małego trójkąta równobocznego o boku a.

Mamy

Liczymy b

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Liczby dodatnie i ujemne

  Przypomnienie

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

os


Liczby naturalne to liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... Zbiór wszystkich liczb naturalnych oznaczamy symbolem N.

Możemy zapisać: N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...}
 

Liczby dodatnie są to liczby większe od zera, czyli na osi liczbowej leżą po prawej stronie zera. Liczby dodatnie zapisujemy ze znakiem + (plus), np. +2, +5 lub bez znaku, np. 2, 5. Czym liczba dodatnia leży bliżej zera, tym jest mniejsza, np. $1$ < $5$.
 

Liczby ujemne są to liczby mniejsze od zera, czyli na osi liczbowej leżą po lewej stronie zera. Liczby ujemne zapisujemy ze znakiem – (minus), np. -2, -7. Czym liczba ujemna jest bliżej zera, tym jest większa, np. $−44$ < $−5$
 

  Zapamiętaj

Każda liczba dodatnia jest większa od każdej liczby ujemnej, np. $5$ > $-5$, $7$ > $-92$. Zero jest większe od każdej liczby ujemnej, np. 0 > $-8$, $0$ > $-1743$. Zero nie jest ani liczbą dodatnią, ani ujemną.

Liczby przeciwne są to takie dwie liczby, których suma wynosi 0. Zapis $a+b=0$ oznacza, że a i b to liczby przeciwne.

Przykłady:

  • Liczbą przeciwną do 4 jest -4.
  • Liczbą przeciwną do -25 jest 25.
  • Liczbą przeciwną do 0 jest 0.


Liczby przeciwne leżą na osi liczbowej w tej samej odległości od zera po przeciwnych stronach.

liczby-przeciwne


Liczby całkowite to liczby naturalne oraz liczby do nich przeciwne. Zbiór wszystkich liczb całkowitych oznaczamy symbolem C.
Możemy zapisać: C = { ..., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, ...}


Przykłady interpretacji liczb ujemnych i dodatnich:

  • + 5° -> 5 stopni powyżej zera
  • - 5° -> 5 stopni poniżej zera
  • + 100 zł -> gotówka (kapitał)
  • - 100 zł -> dług (kredyt)
 
Liczby parzyste i nieparzyste
  • Liczba parzysta – liczba podzielna przez 2 (inaczej mówiąc jest to wielokrotność liczby 2). Liczbami parzystymi są więc liczby: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,...
    Każdą liczbę parzystą możemy przedstawić w postaci iloczynu liczby 2 i pewnej liczby naturalnej. Zatem jeśli n jest liczbą parzystą, to istnieje liczba naturalna k taka, że: $n=2•k$.
  • Liczba nieparzysta – liczba naturalna, która nie jest parzysta. Liczbami nieparzystymi są więc liczby: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,...
    Każdą liczbę nieparzystą n możemy przedstawić w postaci $n=2•k+1$, gdzie k jest liczbą naturalną.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom