Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Narysuj okrąg i posługując się kątomierzem, wpisz w niego dziesięciokąt foremny 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Narysuj okrąg i posługując się kątomierzem, wpisz w niego dziesięciokąt foremny

19
 Zadanie
20
 Zadanie
21
 Zadanie

22
 Zadanie

23
 Zadanie
24
 Zadanie
25
 Zadanie
26
 Zadanie
27
 Zadanie
28
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Rysujemy okrąg o środku w punkcie O i dowolnym promieniu.

Łączymy środek okręgu z dowolnym punktem na okręgu, który nazwiemy A. Odcinek OA jest promieniem okręgu. Za pomocą kątomierza odmierzamy na odcinku OA kąt 36 stopni. Punt przecięcię ramienia kąta i okręgu oznaczamy jako B. 

Za pomocą kątomierza znowu na odcinku OB odmierzamy kąt 36 stopni. Punkt przecięcia ramienia kąta z okręgiem oznaczmy jako C.

I tak czynność tę powtarzamy do momentu wykreślenia dziesięciu punktów na okręgu.

Po połączeniu punktów mamy dziesięciokąt foremny.

 

f

 

 

DYSKUSJA
user avatar
Bruno

17 grudnia 2017
Dzieki za pomoc
user avatar
Magdalena

4 grudnia 2017
dzięki :):)
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom