Matematyka

Inwestor chce zbudować hotel mający nie więcej... 4.5 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
ISBN: 9788375940800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Rozwiązywanie równań i nierówności
Jako że poznaliśmy już wszystkie potrzebne wzory, możemy zająć się pracą nad zadaniami. Ten rozdział nie będzie zawierał już żadnej nowej teorii, a jedynie pokazywał sposoby, jakich można użyć przy rozwiązywaniu zadań.

Zacznijmy od podstawowego przykładu:

$$sin 2x = {1}/{2}$$

Widząc coś takiego pierwsze, co powinno nam przyjść do głowy, to zastanowienie się kątami, dla których $$sin a = {1}/{2}$$. Zadanie jest wręcz podstawowe: oczywiście dzieje się tak dla kątów $$a = {∏}/{6} + k×2 ∏$$, $$a = {5∏}/{6}+k×2∏$$ (przypomnienie: ponieważ $$2∏$$ to okres sinusa, rozwiązania powtarzają się właśnie co $$2 ∏$$).

Skoro w argumencie mamy $$a = 2x$$, to podstawiając do naszych rozwiązań $$2x$$ otrzymujemy:

$$2x = {∏}/{6} + k×2∏$$
$$x = {∏}/{12} + k×∏$$

oraz

$$2x = {5∏}/{6} + k×2∏$$
$$x = {5∏}/{12} + k×∏$$

Co kończy zadanie.

Oczywiście jeśli zamiast sinusa byłby cosinus albo zamiast $$2x$$ występowałoby $$5x$$ rozwiązanie wyglądałoby tak samo.

Przejdźmy do bardziej zaawansowanych przykładów.

Weźmy na przykład $$sin x + cos x = 1$$.
Rozwiązanie wygląda dość prosto:

1) Najpierw podnosimy obie strony do kwadratu:
$$sin^{2}x + 2×sin x cos x + cos^{2}x = 1$$

2) Później zamieniamy prawą stronę z jedynki trygonometrycznej:
$$sin^{2}x + 2×sin x cos x + cos^{2}x = sin^{2}x + cos^{2}x$$

3) Skracamy:
$$sin x cos x = 0$$

4) Mamy iloczyn dwóch składników przyrównany do zera. Musi być więc tak, że albo
  • a) $$sin x = 0$$
    i wtedy $$x = k×∏$$.
     
  • b) $$cosx = 0$$
    i wtedy $$x = {∏}/{2} + k×∏$$.

Jak można było wpaść na to, że rozwiązanie będzie przebiegało właśnie w ten sposób? Po pierwsze, widzimy jedynkę i sumę $$sin$$ i $$cos$$, więc przypomina się nam wzór na jedynkę trygonometryczną. Potem uświadamiamy sobie, że potrzebujemy sumy kwadratów, podnosimy więc obie strony do kwadratu. Później już samo idzie :).

Inny przykład: tym razez trzeba udowodnić tożsamość
$$cos^4x - sin^4x = cos2x$$

1) Najpierw rozłóżmy prawą stronę, żeby w równaniu występowały jedynie funkcje "proste" - $$sin x$$ i $$cos x$$.
$$cos^4x - sin^4x = cos^2x - sin^2x$$

2) Teraz skorzystajmy ze wzoru skróconego mnożenia i rozłóżmy lewą stronę
$$(cos^2x + sin^2x)(cos^2x - sin^2x) = cos^2x - sin^2x$$

3) Widać, że po lewej stronie pojawiła się suma kwadratów sinusa i cosinusa, więc zamieniając ją na jedynkę otrzymujemy rozwiążanie:
$$1×(cos^2x - sin^2x) = cos^2x - sin^2x$$

Kolejny przykład będzie wymagał skorzystania z bardziej zaawansowanego wzoru. Należy udowodnić następującą tożsamość:

$$4sin x sin ({∏}/{3} + x)({∏}/{3} - x) = sin(3x)$$

1) Zacznijmy od rozłożenia sinusa sumy i różnicy kątów
$$4sin x(sin {∏}/{3}  cos x + sin x cos {∏}/{3} )(sin{∏}/{3} cos x - sin x cos{∏}/{3}) = sin(3x)$$

2) Teraz wymnóżmy nawiasy korzystając ze wzoru skróconego mnożenia:
$$4sin x {(sin{∏}/{3}cos x)}^2 - {(sin x cos{∏}/{3})}^2 = sin(3x)$$

3) Oczywiście $$sin {∏}/{3} = {√{3} }/{2}$$ i $$cos {∏}/{3} = {1}/{2}$$.
Wstawiając te liczby do równania i podnosząc je do kwadratu dostajemy:
$$4sin x ({3}/{4} {(cos x)}^2 - {1}/{4}{(sin x)}^2) = sin(3x)$$

4) Teraz możemy wymnożyć lewą stronę oraz zamienić $$sin (3x)$$ na $$sin (2x+x)$$
$$3sin x(cos x)^2 - {(sinx)}^3 = sin(2x + x)$$

5) Zamieniając prawą stronę na iloczyn ze wzoru na $$sin(α + β)$$ otrzymujemy równanie
$$3sin x(cos x)^2 - (sin x)^3 = sin(2x) cos x + sin x cos(2x)$$

6) Ostatni krok to pononwne skorzystanie ze wzoru na $$sin (2x)$$ i $$cos (2x)$$
$$3sin x(cos x)^2 - (sin x)^3 = 2sin x(cos x)^2 + sin x(cos x^2 - sin x^2)$$

Co po prostym wymnożeniu jest równe:
$$3sin x(cos x)^2 - (sin x)^3 = 3sin x(cos x)^2 - (sin x)^3$$

Ten przykład wymagał już dość dobrej znajomości wzorów, ale trudność mogła pojawić się w miejscu, gdzie trzeba było rozbić $$3x$$ na $$2x + x$$. Skąd było wiadomo, że należy to zrobić? Nie ma prostej odpowiedzi. Równania trygonometryczne wymagają po prostu oswojenia się z nimi i praktyki - po kilkunastu zrobionych przykładach po prostu zaczyna się zauważać takie rzeczy. Nie pozostaje zatem nic innego, jak po prostu ćwiczyć.
Wykresy i nierówności
Przy okazji funkcji trygonometrycznych nie sposób nie wspomnieć o nierównościach z ich udziałem. Rozwiązywanie ich opiera się jednak głównie na metodzie graficznej: mając narysowany wykres możemy łatwo określić, jakie liczby spełniają daną nierówność.

Jako że nie ma tu jakiejś dodatkowej teorii, możemy przejść od razu do rozwiązywania przykładów.

Weźmy nierówność $$sin x$$ > $${1}/{2}$$.

1) Narysujmy wykres.

1

2) Zastanówmy się, dla jakich argumentów nierówność zamienia się w równość, tzn. dla jakich kątów ich sinus jest równy $${1}/{2}$$. Łatwo dostrzec, że jest tak na przykład dla kąta $${∏}{6} = 30°$$. Dalej, korzystając z wykresu, możemy sprawdzić, że musi tak być także dla x-a leżącego symetrycznie "po drugiej stronie" wzniesienia sinusa - czyli dla kąta $${5∏ }{6}$$ (punkty A i B na wykresie).

3) Z punktu 2 i wykresu wynika, że naszym rozwiązaniem jest przedział między $${∏}/{6}$$ a $${5∏}/{6}$$.

4) Funkcja jest okresowa, więc musimy wziąć pod uwagę wszystkie rozwiązania: jako że powtarzają się one co $$2∏$$, to ogólna postać rozwiązania to przediał od $${∏}/{6} + k×2∏$$ do $${5 ∏}/{6} + k×2∏$$, gdzie $$k$$ jest dowolną liczbą całkowitą.

Te cztery punkty powinny nam umożliwić rozwiązanie dowolnej nierówności tego typu.

Weźmy inny przykład: $$ an ({∏}/{2} - x)$$ > $$1$$.

1) Jako że funkcja nie jest ładnie określona, najpierw spróbujemy doprowadzić ją do czystej postaci. Korzystając z poznanych już wzorów redukcyjnych możemy stwierdzić, że $$ an ({∏}/{2} - x) = ctg x$$.

(Przypomnienie: zmieniliśmy funkcję, ponieważ w kącie nie mieści się $$∏$$, nie zmieniliśmy znaku, ponieważ kąt leżał w I ćwiartce, w której tangens jest dodatni).

2) Rysujemy wykres.

2

3) Dla jakiego kąta cotangens jest równy 1? Oczywiście dla kąta prostego = $${∏}/{4}$$. Jako że cotangens jest funkcją różnowartościową (w obrębie jednego okresu), to naszym rozwiązaniem jest przedział od 0 do $${∏}/{4}$$.

4) Biorąc pod uwagę okresowość cotangensa trzeba dodać do rozwiązań okres: w wyniku powstaje przedział od $$k×∏$$ do $$k×∏ + {∏}/{4}$$ dla $$k$$ będącego dowolną liczbą całkowitą.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom