Oblicz, jakie objętości roztworów... 4.2 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Chemia

Dane

Szukane

Rozwiązanie

Wyznaczamy liczbę moli w roztworze końcowym:

Objętości użytych roztworów można wyliczyć stosując metodę krzyża: 

 

Zatem : 

Należy następie rozwiązać układ równań: 

Drugie równanie mnożymy "na krzyż":

Wyznaczone liczby wstawiamy do pierwszego równania:

 

Z równań wynika, że roztwory należy zmieszać ze sobą w objętościach 0,1 dm3 roztworu 10-molowego i 0,3 dm3 roztworu 2-molowego

Odpowiedź: Zmieszano ze sobą 0,1dm3 roztworu o stężeniu 10 mol/dm3 oraz 0,3dm3  roztworu o stężeniu 2 mol/dm3

DYSKUSJA
klasa:
Informacje
Autorzy: Teresa Kulawik, Maria Litwin, Styka-Wlazło Szarota
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Jakub

7393

Nauczyciel

Wiedza
Prostokąt

Prostokąt to czworokąt, którego wszystkie kąty wewnętrzne są kątami prostymi.

Sąsiednimi bokami nazywamy te boki, które mają wspólny wierzchołek. W prostokącie każde dwa sąsiednie boki są prostopadłe.

Przeciwległymi bokami nazywamy te boki, które nie mają punktów wspólnych. W prostokącie przeciwległe boki są równoległe oraz mają równe długości.

Odcinki, które łączą dwa przeciwległe wierzchołki (czyli wierzchołki nie należące do jednego boku) nazywamy przekątnymi. Przekątne prostokąta mają równe długości oraz przecinają się w punkcie, który jest środkiem każdej przekątnej, to znaczy punkt ten dzieli przekątne na dwie równe części.

Wymiarami prostokąta nazywamy długości dwóch sąsiednich boków. Jeden bok nazywamy długością, a drugi szerokością prostokąta.
 

prostokat

Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” w liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: `9/4=2\1/4` 

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą). 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom