Matematyka

Autorzy:M. Braun, J. Lech

Wydawnictwo:GWO

Rok wydania:2008

Jeden litr farby wystarcza na pomalowanie 10 m2 powierzchni. 4.6 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Jeden litr farby wystarcza na pomalowanie 10 m2 powierzchni.

6
 Zadanie
7
 Zadanie
8
 Zadanie

9
 Zadanie

10
 Zadanie
11
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

Musimy najpierw policzyć pole powierzchni narysowanego ostrosłupa.

W podstawie ostrosłupa jest trójkąt równoboczny o boku `a=2m. ` Zatem pole podstawy ostrosłupa wynosi

`P_p=(a^2sqrt3)/4=(2^2sqrt3)/4=sqrt3m^2`

Każda ze ścian bocznych ostrosłupa jest trójkątem równoramiennym o podstawie `a=2m`  i ramieniu `b=7m`  . Policzymy wysokość ściany bocznej ostrosłupa, którą oznczymy jako `h` . Wysokość w trójkącie równoramiennym dzieli podstawę trójkąta na połowę, zatem liczymy z tw. Pitagorasa

`h^2+(1/2a)^2=b^2` ` `

`h^2+1^2=7^2`

`h^2=48`

`h=sqrt48=sqrt(16*3)=4sqrt3m`

Liczymy pole ściany bocznej

`P_s=1/2*a*h=1/2*2*4sqrt3=4sqrt3m^2`

Teraz możemy policzyć pole powierzchni całego ostrosłupa

`P=P_p+3*P_s=sqrt3+3*4sqrt3=13sqrt3~~22.51m^2`

Skoro jeden litr farby wystarcza na pomalowanie `10 m^2`  powierzchni, zatem do pomalowania ostrosłupa zużyjemy

`(22,51)/10=2,251`  litra farby

Potrzebujemy zatem 3 l farby, prawidłowa jest odpowiedź C.

 

Odpowiedź:

C