Matematyka

Rysunek przedstawia siatkę ścian bocznych ostrosłupa trójkątnego 4.55 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Rysunek przedstawia siatkę ścian bocznych ostrosłupa trójkątnego

6
 Zadanie

7
 Zadanie

8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Z rysunku możemy odczytać, iż w podstawie mamy trójkąt o bokach długości 9, 9 i 6, zatem w podstawie ostrosłupa jest trójkąt równoramienny o podstawie długości   oraz ramionach długości   Aby policzyć pole powierzchni podstawy ostrosłupa, należy wyznaczyć   - wysokość  trójkąta równoramiennego, który jest w podstawie ostrosłupa.

Wiemy, że wysokośc   w trójkącie równoramiennym dzieli podstawę trójkąta na połowę, zatem mamy z tw. Pitagorasa

Możemy teraz policzyć pole trójkąta równoramiennego, który jest w podstawie ostrosłupa

Prawidłowa jest odpowiedź D.

Odpowiedź:

D

DYSKUSJA
user avatar
Łucja

17 lutego 2018
Dzieki za pomoc :)
klasa:
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” w liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: `9/4=2\1/4` 

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą). 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom