Matematyka

Wysokość graniastosłupa prawidłowego trójkątnego wynosi 4.71 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Wysokość graniastosłupa prawidłowego trójkątnego wynosi

29
 Zadanie

30
 Zadanie

31
 Zadanie
32
 Zadanie
33
 Zadanie
34
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dodawanie ułamków zwykłych
  1. Dodawanie ułamków o jednakowych mianownikach – dodajemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$4/7+6/7={10}/7=1 3/7$$

      Uwaga

    Gdy w wyniku dodania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości (jak w przykładzie powyższym).

    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę (jak w przykładzie poniżej).

  2. Dodawanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy dodawanie.

    Przykład:

    • $$3/10+ 1/5=3/{10}+ {1•2}/{5•2}=3/{10}+ 2/{10}=5/{10}={5÷5}/{10÷5}=1/2$$
       
  3. Dodawanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy dodawanie ułamków o jednakowych mianownikach.

      $$2 1/3+ 1 1/3= {2•3+1}/3+{1•3+1}/3=7/3+4/3={11}/3=3 2/3$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3+ 1 1/3= 2 + 1/3+ 1 + 1/3= 3 + 2/3= 3 2/3$$
       
  4. Dodawanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy dodawanie.

      $$2 1/3+ 1 1/2= {2•3+1}/3+{1•2+1}/2=7/3+3/2={7•2}/{3•2}+{3•3}/{2•3}={14}/6 + 9/6={23}/6=3 5/6$$
       
    • II sposób – oddzielnie dodajemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/3+ 1 1/2= 2 + 1/3+ 1 + 1/2= 3 + 1/3+ 1/2= 3 + {1•2}/{3•2}+ {1•3}/{2•3}= 3 + 2/6+ 3/6= 3 + 5/6= 3 5/6$$
 
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $$r.2$$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom