Matematyka

Rozwiąż równanie ... 4.55 gwiazdek na podstawie 11 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

    

Pamiętajmy, że mianownik ułamka nie może być równy ,

więc:

1)  

2)  

3)  

Sprawdzimy, dla jakich  lewa strona równania jest równa ,

następnie wyłączymy te punkty z dziedziny równania.   

  

  

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem liczb  i  , czyli .  

 

Przenieś wyrażenie na lewą stronę i zmień znaki na odwrotne

 

Zapisz  jak sumę  

 

Wyłącz wspólny czynnik  przed nawias

 

Wyłącz wspólny czynnik  przed nawias

 

Zapisz w postaci jednego ułamka o wspólnym mianowniku równym 

  

Każdy wyraz z nawiasu pomnóż przez 

  

Każdy wyraz z nawiasu pomnóż przez 

 

Gdy przed nawiasem znajduje się znak , opuszczając nawias zmień znak każdego wyrazu na przeciwny

Oblicz sumę wyrazów podobnych

Wiemy, że wyrażenia  i  są różne od zera, zatem pomnóż obie strony równania przez  

   

Rozwiązaniem jest liczba , należy ona do dziedziny równania. 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326725906
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Równania

Dwa wyrażenia algebraiczne, z których przynajmniej jedno zawiera literę, połączone znakiem równości tworzą równanie.

Litera występująca w równaniu to niewiadoma.

Wyrażenie występujące po lewej stronie znaku równości to lewa strona równania, a wyrażenie występujące po prawej stronie to prawa strona równania.

lewa i prawa strona równania

Równanie pierwszego stopnia z jedną niewiadomą to dwa wyrażenia algebraiczne połączone znakiem równości, przy czym w równaniu tym występuje tylko jedna niewiadoma w pierwszej potędze.

Przykłady równań pierwszego stopnia z jedną niewiadomą:

  • $$7x − 11 = 17$$
  • $$8y = 16$$
  • $$3x + 7 = 10 + 2x$$

Rozwiązanie równania z jedną niewiadomą – to liczba, która podstawiona do równania w miejsce niewiadomej spełnia to równanie (czyli po podstawieniu tej liczby w miejsce niewiadomej, lewa strona równania będzie się równać prawej stronie).

Przykład 1.

Sprawdźmy czy liczba 2 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.
Podstawiamy liczbę 2 w miejsce niewiadomej x.

  • I sposób
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•2+ 7 = 6 + 7 = 13$$
    $$P = 10 + 2x = 10 + 2•2= 10 + 4 = 14$$
    $$13≠14$$, czyli $$L≠P$$

    czyli liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

  • II sposób
    Podstawiamy 2 w miejsce x i sprawdzamy czy otrzymamy równość prawdziwą:

    $$3•2+7=10 + 2•2$$
    $$6 + 7 = 10 + 4$$
    $$13 = 14$$ ← otrzymaliśmy równość fałszywą

    zatem liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

Przykład 2.

Sprawdźmy czy liczba 3 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.

  • Podstawiamy liczbę 3 w miejsce niewiadomej x.
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•3+ 7 = 9 + 7 = 16$$
    $$P = 10 + 2x = 10 + 2•3= 10 + 6 = 16$$
    $$L = P$$

    Zatem liczba 3 spełnia dane równanie, zatem jest jego rozwiązaniem.
Rozwiązywanie równań

Rozwiązać równanie to znaczy znaleźć wszystkie liczby, które je spełniają.

Rozwiązując równanie dążymy do tego, aby po jednej stronie równania znalazły się tylko niewiadome, a po drugiej tylko liczby.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom