Matematyka

Rozwiąż równanie ... 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

   

Pamiętajmy, że mianownik ułamka nie może być równy ,

więc  

.

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

 

 

 

 

Rozwiązaniem jest liczba , należy ona do dziedziny równania.


    

Pamiętajmy, że mianownik ułamka nie może być równy  ,

więc  

  

 .

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

 

 

.

Rozwiązaniem jest liczba , należy ona do dziedziny równania.


    

Pamiętajmy, że mianownik ułamka nie może być równy ,

więc   i 

czyli  i .    

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem liczb  i , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

Następnie mnożymy obie strony przez   

 

 

 

 

 

 

 

 

 

Rozwiązaniami są liczby  i , należą one do dziedziny równania. 


    

Pamiętajmy, że mianownik ułamka nie może być równy 0,

więc    i 

czyli   i   .    

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem liczb  i  , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

Następnie mnożymy obie strony przez  

 

 

 

 

 

 

 

 

 

Rozwiązaniem jest liczba , należy ona do dziedziny równania. 


    

Pamiętajmy, że mianownik ułamka nie może być równy ,

więc  i 

czyli  i .    

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem liczb  i , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

Następnie mnożymy obie strony przez  

 

 

 

 

 

 

 

 

 

 

Rozwiązaniami są liczby  i , należą one do dziedziny równania. 


    

Pamiętajmy, że mianownik ułamka nie może być równy ,

więc  i 

czyli .    

Dziedziną jest zbiór liczb rzeczywistych z wyłączeniem liczby , czyli .  

 

Mnożymy teraz obie strony równania przez  i otrzymujemy równanie:

 

Następnie mnożymy obie strony przez  

 

 

 

 

 

 

 

 

 

 

Rozwiązaniem jest tylko liczba , ponieważ liczba  nie należy do dziedziny równania.   

DYSKUSJA
klasa:
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326725906
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Sposoby rozwiązywania równań

Aby obliczyć jaka liczba spełnia równanie należy je rozwiązać.

Najprostszą metodą rozwiązywania równań jest metoda równań równoważnych.

Polega ona na dodaniu/odjęciu tego samego wyrażenia od obu stron równania lub na pomnożeniu/podzieleniu przez tę samą liczbę (różną od zera) obu stron równania.

Przykłady:

  1. dodanie tego samego wyrażenia

    `x-10=14 \ \ \ \ \ \ \ \ |+10`   

    `x=24`    (dodaliśmy do obu stron równania liczbę 10)

  2. odjęcie tego samego wyrażenia

    `y+13=23 \ \ \ \ \ \ \ \ |-13` 

    `y=10`    (odjęliśmy od obu stron równania liczbę 13)

  3. pomnożenie przez tę samą liczbę

    `0,5x=7 \ \ \ \ \ \ \ \ |*2`  

    `x=14`     (pomnożyliśmy obie strony równania razy 2)

  4. podzielenie przez tę samą liczbę

    `3x=27 \ \ \ \ \ \ \ \ |:3`  

    `x=9`    (podzieliliśmy obie strony równania przez 3)

Równania wielomianowe
Dotychczas zajmowaliśmy się jedynie równaniami liniowymi i kwadratowymi -nadszedł czas na rozwinięcie ich na wielomiany wyższego stopnia.

Ogólna postać równania wielomianowego to:

$$a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0$$

Rozwiązywanie takiego równania polega na niczym innym, jak znajdowaniu pierwiastków wielomianu. Oczywiście nie zawsze jest to wykonalne, jednak na maturze przykłady są tak ułożone, aby dało się to zrobić poznanymi przez nas metodami:

1) rozkładaniem wyrażenia na czynniki
2) stosując twierdzenie o pierwiastkach wymiernych
a także stosując nową, której nauczymy się w tym rozdziale:
3) poprzez podstawienie

Zwykle naszym celem będzie doprowadzenie do równania kwadratowego, z którym potrafimy sobie poradzić. Weźmy na przykład równanie:

$$3x^3+6x^2+3x+6 = 0$$

1) Po pierwsze można zauważyć, że po wyłączeniu odpowiednich czynników przed nawias

$$3x^2(x + 2) + 3(x+2) = 0$$

możliwe staje się rozłożenie wielomianu na czynniki

$$3(x-2)(x^2 + 1) = 0$$

Gdy mamy już postać iloczynową, sprawdzamy po prostu, gdzie zerują się wszystkie nawiasy. W naszym przypadku pierwszy z nich ma pierwiastek w punkcie $$x=2$$, zaś drugi nie ma go wcale (jest sumą kwadratu i liczby dodatniej). Jedynym rozwiązaniem naszego równania jest więc $$x=2$$.


2) Druga metoda opiera sie na wypisaniu dzielników pierwszego i ostatniego współczynnika i sprawdzeniu wszystkich ich kombinacji. Jednak zanim to zrobimy warto podzielić obie strony przez równania przez 3 - uprościmy sobie w ten sposób pracę.
$$3x^3+6x^2+3x+6 = 0$$ $$|:3$$
$$x^3+2x^2+x+2 = 0$$

a) Dzielniki 1 to: 1, -1
b) Dzielniki 2 to: 1, 2, -1, -2

Próbując różnych kombinacji odnajdujemy w końcu pierwiastek równy $$-2$$, a po podzieleniu wielomianu przez dwumian $$x+2$$ korzystając ze schematu Hornera otrzymujemy $$(x+2)(x^2+1) = 0$$. Dalsza część jest analogiczna jak w przypadku poprzedniej metody.

Sposób drugi może wydawać się bardziej skomplikowany i czasochłonny, ale jeżeli nie dostrzeżemy, jak należy rozkładać wielomian - jest to nasza jedyna droga.

Trzecia metoda - podstawienia - sprawdza się, gdy mamy do czynienia na przykład z równaniem dwukwadratowym. Jest to równanie postaci:

$$ax^{2n} + bx^n + c = 0$$

Mimo, że mamy tu do czynienia z wielomianem wysokiego stopnia, podstawiając $$x^n = t$$ otrzymujemy zwykłe równanie kwadratowe:

$$at^2 + bt + c = $$

Rozwiązujemy więc to równanie: załóżmy, że ma ono pierwiastki równe $$t_1$$ oraz $$t_2$$. Wracamy wtedy do podstawienia i otrzymujemy rozwiązania:

$$x_1 = t_1^n$$ oraz $$x_2 = t_2^n$$.

Przykład:
Rozwiązać równanie $$x^8 - 5x^4 + 6 = 0$$.

Pierwszy krok to podstawienie $$t = x^4$$. Zapisujemy równanie w nowej formie:
$$t^2 - 5t + 6 = 0$$

Obliczając deltę i standardowo wyliczając pierwiastki otrzymujemy:

$$t_1 = 2$$ oraz $$t_2 = 3$$. Wracając do podstawienia uzyskujemy wyniki $$x_1 = 2^4 = 16$$ oraz $$x_2 = 3^4 = 81$$. Należy jeszcze pamiętać o sprawdzeniu, czy wyniki rzeczywiście są pierwiastkami równania wyjściowego. Dlaczego?

Ponieważ jeśli pierwiastkami byłyby liczby ujemne, to po podniesieniu do parzystej potęgi stałyby się dodatnie i w oczywisty sposób nie spełniałyby równania.
 

Ćwieczenie 1. Rozwiąż równanie:
$$2x^5 - 3x^4 + 2x^2 - 3x = 0$$

Pierwsza obserwacja, jakiej dokonujemy, to to, że $$x = 0$$ jest rozwiązaniem tego równania. Możemy więc założyć, że szukamy innych i podzielić obustronnie przez $$x$$.

$$2x^4 - 3x^3 + 2x - 3 = 0$$

Teraz będziemy rozwiązywali to równanie metodą wyłączania przed nawias. Zauważmy, że dzieląc nasz wielomian na dwa składniki możemy łatwo wyłączyć pewien wspólny czynnik:

$$x^3(2x - 3) + (2x - 3) = 0$$

$$(2x - 3)(x^3 + 1) = 0$$

Mając już taką postać możemy odnaleźć kolejne rozwiązanie, gdy zeruje się pierwszy czynnik:

$$2x - 3 = 0$$
$$2x = 3$$
$$x = {3}/{2}$$

Zakładając teraz, że $$x ≠ {3}/{2}$$ podzielmy obustronnie przez $$(2x - 3)$$.

Przechodzimy teraz wreszcie do ostatniej części rozwiązania:

$$x^3 + 1 = 0$$
$$x ^3 = -1$$

Możemy spierwiastkować obie strony (pierwiastkiem trzeciego stopnia)

$$x = -1$$

otrzymując w ten sposób trzecie rozwiązanie.

Doszliśmy więc do tego, że rozwiązaniami wyjściowego równania $$2x^5 - 3x^4 + 2x^2 - 3x = 0$$ są liczby $$0, {3}/{2}, -1$$.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom