Matematyka

Narysowana prosta k jest styczna do okręgu. Długość odcinka x wynosi 4.54 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Narysowana prosta k jest styczna do okręgu. Długość odcinka x wynosi

5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie

9
 Zadanie

10
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

Wyobraźmy sobie promień okręgu poprowadzony do punktu styczności z prostą k. Mamy wówczas trójkąt prostokątny o przyprostokątnych 9 i x oraz przeciwprostokątnej długości 15 (9+6). Z tw. Pitagorasa mamy

`x^2+9^2=15^2`

`x^2+81=225`

`x^2=144`

`x=12`

Odpowiedź C.

Odpowiedź:

C

DYSKUSJA
Informacje
Matematyka z plusem 2
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie