Prosta k jest styczna do dwóch okręgów o różnych promieniach - Zadanie 7: Matematyka z plusem 2 - strona 69
Matematyka
Wybierz książkę
Prosta k jest styczna do dwóch okręgów o różnych promieniach 4.55 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Prosta k jest styczna do dwóch okręgów o różnych promieniach

5
 Zadanie
6
 Zadanie

7
 Zadanie

8
 Zadanie
9
 Zadanie
10
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Przyrzyjmy się rysunkowi

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do odpowiedzi undefined
Pola

8 września 2018
dziena
opinia do zadania undefined
Karolina

17 stycznia 2018
dzięki :)
klasa:
II gimnazjum
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Pole powierzchni ostrosłupa

Pole powierzchni całkowitej ostrosłupa jest sumą pola jego podstawy i pola powierzchni bocznej.

Pole powierzchni bocznej ostrosłupa to suma pól ścian bocznych.

 

`P_c=P_p+P_b` 

`P_c \ \ ->`   pole powierzchni całkowitej 

`P_p \ \ ->`   pole podstawy 

`P_b \ \ ->`   pole powierzchni bocznej 

Reguły postępowania przy rozwiązywaniu równań
  1. Do obu stron równania można dodać takie samo wyrażenie.

    Przykład:

    $x−4=6$ → aby przenieść (-4) na prawą stronę, musimy do obu stron dodać 4
    $x=6+4$
    $x=10$ → rozwiązaniem tego równania jest liczba 10.
     
  2. Od obu stron równania można odjąć takie samo wyrażenie.

    Przykład:

    $x + 9 = 12$ → aby przenieść 9 na prawą stronę, musimy odjąć od obu stron 9
    $x = 12 − 9$
    $x = 3$ → rozwiązaniem tego równania jest liczba 3.
     
  3. Obie strony równania można pomnożyć przez taką samą liczbę różną od zera.

    Przykład:

    $x/5= 10$
    $1/5 x= 10$ → aby zostawić po lewej stronie tylko x, musimy pomnożyć obie strony przez 5.
    $x = 5•10$
    $x = 50$ → rozwiązaniem tego równania jest liczba 50.
     
  4. Obie strony równania można podzielić przez taką samą liczbę różną od zera.

    Przykład:

    $5×x = 15$ → aby zostawić po lewej stronie tylko x, musimy podzielić obie strony przez 5
    $x = 15÷5$
    $x = 3$ → rozwiązaniem tego równania jest liczba 3.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom