Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Dany jest trójkąt ABC o trzech bokach różnej długości. Które ze zdań nie opisuje tego samego punktu P 4.4 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Dany jest trójkąt ABC o trzech bokach różnej długości. Które ze zdań nie opisuje tego samego punktu P

38
 Zadanie
1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Łatwo można zauważyć, że prawidłowa jest odpowiedź D, ponieważ zdania ABC opisują ten sam punkt.

Jeśli  punkt P jest srodkiem okręgu opisanego na tym trójkącie (B), to jest on punktem przecięcia symetralnych boków trójkata (C) oraz wszystkie wierzchołki trójkąta leżą na okręgu, a co za tym idzie odległości punktu P od wierzchołków trójkąta ABC są równe (wynoszą R - długość promienia okręgu) (A).

DYSKUSJA
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Zobacz także
Udostępnij zadanie