Matematyka

Autorzy:M. Braun, J. Lech

Wydawnictwo:GWO

Rok wydania:2008

Narysuj trójkąt, w którym najdłuższy bok ma 4 cm, a dwa kąty podane poniżej miary 4.54 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Narysuj trójkąt, w którym najdłuższy bok ma 4 cm, a dwa kąty podane poniżej miary

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

5
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

a)

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 30 stopni.

Przy wierzchołku B odkładamy kąt o mierze 60 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt. Jest to trójkąt prostokątny.

Teraz wystarczy wykreślić symetralną dwóch rzeciwprostokątnej trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów. Punk przecięcia odcinka AB i symetralnej jest środkiem okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.

b)

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 30 stopni.

Przy wierzchołku B odkładamy kąt o mierze 45 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt.

Teraz wystarczy wykreślić symetralne dwóch dowolnych boków trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów.

Dla odcinka BC konstrukcję powtarzamy.

Na przecięciu symetralnych mamy środek okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.

c)

 

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 45 stopni.

Przy wierzchołku B odkładamy kąt o mierze 60 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt.

Teraz wystarczy wykreślić symetralne dwóch dowolnych boków trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów.

Dla odcinka BC konstrukcję powtarzamy.

Na przecięciu symetralnych mamy środek okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.