Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Narysuj trójkąt, w którym najdłuższy bok ma 4 cm, a dwa kąty podane poniżej miary 4.54 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Narysuj trójkąt, w którym najdłuższy bok ma 4 cm, a dwa kąty podane poniżej miary

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 30 stopni.

Przy wierzchołku B odkładamy kąt o mierze 60 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt. Jest to trójkąt prostokątny.

Teraz wystarczy wykreślić symetralną dwóch rzeciwprostokątnej trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów. Punk przecięcia odcinka AB i symetralnej jest środkiem okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.

b)

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 30 stopni.

Przy wierzchołku B odkładamy kąt o mierze 45 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt.

Teraz wystarczy wykreślić symetralne dwóch dowolnych boków trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów.

Dla odcinka BC konstrukcję powtarzamy.

Na przecięciu symetralnych mamy środek okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.

c)

 

Rysujemy odcinek AB długości 4 cm.

Przy wierzchołku A odkładamy kąt o mierze 45 stopni.

Przy wierzchołku B odkładamy kąt o mierze 60 stopni.

Punkt przecięcia ramion kątów oznaczamy literą C. Rysujemy odcinki AC i BC. Mamy zadany trójkąt.

Teraz wystarczy wykreślić symetralne dwóch dowolnych boków trójkąta.

Konstrukcja symetralnej:

Zakreślamy cyrklem dwa okręgi o środkach w punktach A oraz B o identycznym promieniu większym od połowy długości odcinka AB. Okręgi te przetną się w dwóch różnych punktach.

Prowadzimy prostą przez wyznaczone punkty przecięcia okręgów.

Dla odcinka BC konstrukcję powtarzamy.

Na przecięciu symetralnych mamy środek okręgu opisanego na trójkącie.

Zakreślamy okrąg o środku w punkcie O i promieniu o długości odcinka OA. Mamy okrąg opisany na trójkącie o podanych kątach.

 

 

 

DYSKUSJA
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu działań najważniejsze jest zachowanie odpowiedniej kolejności wykonywania działań.


Kolejność wykonywania działań:

  1. Działania w nawiasach

  2. Potęgowanie

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje zarówno dzielenie jak i mnożenie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej do prawej strony).
    Przykład`16:2*5=8*5=40` 

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje zarówno odejmowanie jak i dodawanie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej strony do prawej).
    Przykład`24-6+2=18+2=20` 


Przykład:

`(45-9*3)-4=(45-27)-4=18-4=14` 

Liczby mieszane i ich zamiana na ułamek niewłaściwy

ulamek

Liczba mieszana składa się z części całkowitej (jest nią liczba naturalna) oraz części ułamkowej (jest nią ułamek zwykły właściwy).


Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: 

  1. Mianownik części ułamkowej mnożymy razy część całkowitą liczby mieszanej.

  2. Do otrzymanego iloczynu dodajemy licznik części ułamkowej.

Mianownik szukanego ułamka niewłaściwego jest równy mianownikowi części ułamkowej liczby mieszanej.

Przykłady: 

`3 1/4=(3*4+1)/4=13/4` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom