Matematyka

Olicz miarę kąta 4.52 gwiazdek na podstawie 23 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

W rozwiązaniu będziemy stosować twierdzenie o tym, iż kąt środkowy oparty na tym samym łuku co kąt wpisany ma miarę dwukrotnie większą od miary kąta wpisanego.

a) Kąt wpisany alfa oparty jest na tym samym łuku co kąt środkowy o mierze 160 stopni. Zatem miara kąta alfa wynosi 80 stopni.

b) Policzmy miarę kąta środkowego opartego na tym samym łuku, co kąt wpisany alfa. Zauważmy, że narysowany trójkąt o wierzchołku w środku okręgu jest równoramienny (długość ramion jest równa długości promienia okręgu).

Zatem kąt wpisany ma miarę 

c) Policzmy miarę kąta środkowego opartego na tym samym łuku, co kąt wpisany alfa.

 Zatem kąt wpisany ma miarę 

d) Policzmy miarę kąta środkowego opartego na tym samym łuku, co kąt wpisany alfa. Zauważmy, że w ten sposób nakreślony trójkąt o wierzchołku w środku okręgu jest równoramienny (długość ramion jest równa długości promienia okręgu).

Miara kąta środkowego opartego na tym samym łuku co kąt alfa

Zatem miara kąta wpisanego 

Odpowiedź:

80, 50, 110,65

DYSKUSJA
opinia do odpowiedzi Olicz miarę kąta - Zadanie 2: Matematyka z plusem 2 - strona 63
Renata

9 grudnia 2017
Dzięki za pomoc :)
klasa:
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” w liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: `9/4=2\1/4` 

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą). 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom