Matematyka

Przyprostokątna trójkąta prostokątnego mają długości 15cm i 20cm. 4.58 gwiazdek na podstawie 12 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Przyprostokątna trójkąta prostokątnego mają długości 15cm i 20cm.

26
 Zadanie
27
 Zadanie
28
 Zadanie
29
 Zadanie
30
 Zadanie
31
 Zadanie
32
 Zadanie

33
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Średnica okręgu to długość przeciwprostokątnej. Przeciwprostokątną obliczamy z tw. Pitagorasa:

d=25cm

r=12,5cm

Odpowiedź:

Promień wynosi 12,5cm

DYSKUSJA
user avatar
Adrianna

22 marca 2018
Dzięki :)
user avatar
Anastazja

22 stycznia 2018
dzięki :)
user avatar
Ola

6 grudnia 2017
Dzięki!!!
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201247
Autor rozwiązania
user profile

Jacek

2037

Nauczyciel

Wiedza
Skala i plan

Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.

Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.

Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.

Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.

Przykład:

skala
 

Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.

 

Przykłady na odczytywanie skali:

  • skala 1:50 oznacza zmniejszenie 50 razy
  • skala 20:1 oznacza zwiększenie 20 razy
  • skala 1:8 oznacza zmniejszenie 8 razy
  • skala 5:1 oznacza zwiększenie 5 razy
 

Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.

Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.

Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).

Przykłady na odczytywanie skali mapy
  • skala 1:500000 oznacza, że 1 cm na mapie to 500000 cm w rzeczywistości
  • skala 1:2000 oznacza, że 1 cm na mapie to 2000 cm w rzeczywistości
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom