Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Ogrodzony z trzech stron ogród w kształcie kwadratu ma powierzchnię 16 a. 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Ogrodzony z trzech stron ogród w kształcie kwadratu ma powierzchnię 16 a.

9
 Zadanie
10
 Zadanie

11
 Zadanie

12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie
18
 Zadanie

`"Rysunek pomocniczy:"`

`"Bok kwadratu wynosi:"\ sqrt(16\ "a")=sqrt(1600\ "m"^2)=40\ "m"`

`"Chodnik ma szerokość:"\ 40-1-1=38\ "m"`

`"Długość chodnika wynosi:"\ 40-1=39\ "m"`

`"Pole powierzchni chodnika wynosi:"`

`"P"=2*39*0,6+(40-1-1)*0,6=0,6*(78+38)=0,6*116=69,6\ "m"^2`

`"Chodnik zajmuje:"`

`(69,6)/1600*100%=(69,6)/16%=4,35%\ "powierzchni całej działki."`

DYSKUSJA
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135347
Autor rozwiązania
user profile image

Marek

1102

Korepetytor

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie