Matematyka

Określ przedziały monotoniczności ... 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Wierzchołek paraboli jest punktem przecięcia paraboli z jej osią symetrii.

Parabola o równaniu  powstaje przez przesunięcie wykresu funkcji  ()

o  jednostek wzdłuż osi  i o  jednostek wzdłuż osi .    

 

   Wykres paraboli o równaniu  powstał przez przesunięcie wykresu funkcji

 jednostki w prawo i o  jednostkę w górę. Wierzchołek paraboli  

ma współrzędne , zatem oś symetrii tej paraboli ma równanie 

Ramiona paraboli skierowane są do góry, ponieważ  jest większe od  ,

stąd w przedziale  funkcja

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326725906
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Przedziały monotoniczności
Skoro pochodna funkcji mówi o tym, czy funkcja rośnie, czy maleje, to można na jej podstawie powiedzieć, w jakich przedziałach funkcja jest monotoniczna. Zasada jest oczywista: jeśli pochodna jest dodatnia, to funkcja rośnie - jeśli ujemna, maleje.

Zobaczmy to na przykładzie funkcji
$$f(x) = x^3 + 2x^2 - 3x + 1$$

Na pierwszy rzut oka niezbyt widać, ja można sprawdzić jej monotniczność: można co prawda wyliczyć jej pierwiastki, ale byłoby to dość skomplikowane z uwagi na jej 3 stopień.

Używając pochodnej sprawa staje się prostsza:
$$f'(x) = 3x^2 + 4x - 3$$

Skoro mamy już funkcję kwadratową, możemy obliczyć jej pierwiastki:
$$x_1 = {-2-√{13} }/{3}$$
$$x_2 = {-2+√{13} }/{3}$$

Skoro wiemy też, że przy największej potędze $$x$$-a jest znak dodatni, to możemy powiedzieć, że w przedziale $$(-∞, x_1)$$ funkcja rośnie, w przedziale $$< x_1, x_2 >$$ - maleje i w przedziale $$(x_2, ∞)$$ - znowu rośnie.
 
Monotoniczność

Ostatnie co nam zostało, czyli sprawdzenie kiedy funkcja jest rosnąca, kiedy malejąca, kiedy stała.

Dla malejącej y zmniejsza się gdy przesuwamy się w prawo

Dla stałej y się nie zmienia

Dla rosnącej y rośnie gdy przesuwamy się w prawo

Zaznaczę na wykresie:

Rosnącą - kolor czerwony

Malejącą - kolor niebieski

Stałą - kolor zielony

wyk9

Pozostaje nam spisać przedziały

$$f↓$$ dla $$xϵ<-6;-3> $$

$$f→$$ dla $$ xϵ<-1;1>$$

$$f↑$$ dla $$ xϵ<-3;-1>$$
$$f↑$$ dla $$ xϵ<1;4> $$

 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom