Trójkąt ABC, w którym... - Zadanie 15: MATeMAtyka 3. Zakres podstawowy i rozszerzony - strona 125
Matematyka
Wybierz książkę
Trójkąt ABC, w którym... 4.0 gwiazdek na podstawie 9 opinii
  1. Technikum
  2. IV Klasa
  3. Matematyka

Rysunek pomocniczy:

Zauważmy, że korzystając z funkcji trygonometrycznych otrzymujemy:

 

 

 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Barbara Wolnik
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326720505
Autor rozwiązania
user profile

Magda

7676

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Objętość graniastosłupa

Objętość („V”) prostopadłościanu oblicza się ze wzoru $ V=a×b×H $.

objetoscgraniastoslupa
a,b -> krawędzie podstawy
H -> wysokość (krawędź boczna)

Z powyższego wzoru na objętość prostopadłościanu łatwo możemy wywnioskować ogólny wzór na objętość dowolnego graniastosłupa.

Wzór na objętość dowolnego graniastosłupa to $ V=P_{podstawy}×H $.

 
Graniastosłupy

Graniastosłupem nazywamy wielościan, w którym dwie ściany zwane podstawami są równoległymi wielokątami przystającymi, natomiast ściany boczne są równoległobokami.
Wysokość graniastosłupa to odcinek prostopadły do jego podstaw, którego końce zawierają się w płaszczyznach na których leżą te podstawy.

Typowe graniastosłupy:

img01

Graniastosłupy mogą być:
 
  • Proste - wtedy ich wszystkie ściany boczne to prostokąty, a podstawa to dowolny wielokąt
  • Prawidłowe - wtedy to graniastosłupy proste, które mają w podstawie wielokąt foremny (wszystkie boki równej długości) np. trójkąt równoboczny, kwadrat itp.

Typowym graniastosłupem prostym jest prostopadłościan - graniastosłup o podstawie prostokąta.

img02

d jest przekątną prostopadłościanu. Jak policzyć taką przekątną? Skorzystamy z tego, że w graniastosłupie prostym ściany są prostopadłe do podstaw, więc trójkąt zaznaczony na niebiesko jest prostokątny:

img03

Zatem kłania nam się twierdzenie Pitagorasa i to dwukrotnie, ponieważ musimy go użyć do d, ale także do przekątnej podstawy, nazwijmy ją $e$. Wtedy:
$a^2+b^2=e^2$ dla trójkąta o bokach $a$, $b$, $e$ (który jest prostokątny bo podstawa to prostokąt)
$e^2+c^2=d^2$ (dla niebieskiego trójkąta)

Wystarczy teraz podstawić $e^2$ z pierwszego równania do drugiego, żeby dostać:
$a^2+b^2+c^2=d^2$

Typowym graniastosłupem prawidłowym jest sześcian, czyli graniastosłup o podstawie kwadratu, którego wysokość jest równa krawędzi podstawy.

img04

Przekątną sześcianu liczymy identycznie jak w prostopadłościanie.

Przejdźmy teraz do Pola i Objętości.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2789ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5532WIADOMOŚCI
NAPISALIŚCIE745KOMENTARZY
komentarze
... i7635razy podziękowaliście
Autorom