W kole o środku S i średnicy ... - Zadanie 7.15: Prosto do matury 1. Zakres podstawowy - strona 168
Matematyka
Wybierz książkę
W kole o środku S i średnicy ... 4.86 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Przyjmijmy oznaczenia jak na rysunku.

Znamy długość średnicy AB:

 

Długość promienia jest dwukrotnie mniejsza od długości średnicy:

 

 

Pole części koła pomiędzy średnicą AB i cięciwą CD możemy obliczyć sumując pola dwóch wycinków koła oraz trójkąta równoramiennego.

Obliczmy miarę kąta α:

 

 

 

Obliczmy miarę kąta ß:

 

 

 

Obliczmy pole wycinka koła o o promieniu 8 i kącie środkowym α = 30o.

 

 

Chcemy obliczyć pole trójkąta. Musimy wyznaczyć długość odcinka CD (podstawa) oraz odcinka FS (wysokość).  

Zauważmy, że:

 

oraz 

 

Korzystając z własności trójkąta o kątach 90o, 60o oraz 30o wyznaczamy długość odcinka DE oraz SE.

 

 

 

Stąd mamy:

 

 

 

Cięciwa Cd podzielona jest na dwa odcinki o równej długości, stąd:

 

Obliczamy pole trójkąta równoramiennego CSD:

 

 

Obliczamy pole części koła pomiedzy średnicą i cięciwą:

 

 

 

Odp: Pole części koła pomiędzy średnicą a cięciwą wynosi 32/3π+163 j2.

DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326721670
Autor rozwiązania
user profile

Justyna

18173

Nauczyciel

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $0,34÷10= 0,034$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $311,25÷100= 3,1125$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $53÷1000= 0,053$ ← przesuwamy przecinek o trzy miejsca w lewo
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $(3 • 5) • 2 = 3 • (5 • 2)$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $a = b • c$, np. $12÷3 = 4$, bo $12 = 3 • 4$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2718ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6157WIADOMOŚCI
NAPISALIŚCIE773KOMENTARZY
komentarze
... i8018razy podziękowaliście
Autorom