Matematyka

Matematyka z plusem 2 (Podręcznik, GWO)

a) Narysuj sześciokąt, który ma wszystkie ... 4.53 gwiazdek na podstawie 19 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Sześciokąt foremny to sześciokąt, który ma wszystkie boki równej długości i wszystkie jego kąty mają równą miarę. 


a) Sześciokąt, którego wszystkie boki mają równą długość, ale nie jest on sześciokątem foremnym, czyli jego kąty nie mają równych miar. 


b) Sześciokąt, który ma wszystkie kąty równej miary, ale nie jest sześciokątem foremnym, czyli jego boki nie mają takiej samej długości. 

DYSKUSJA
user profile image
Gość

5 kwietnia 2018
wielkie dzięki
user profile image
Wiola

24 marca 2018
Dzięki!!!
user profile image
Gość

1

11 grudnia 2017
Spk
user profile image
Patryk

7 października 2017
Dzięki :):)
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Zobacz także
Udostępnij zadanie