Przydatne będą wzory skróconego mnożenia:
(a+b)2=a2+2ab+b2
(a−b)2=a2−2ab+b2
(a−b)(a+b)=a2−b2
a)
f(x)=(3x−2)2=9x2−12x+4
Δ=(−12)2−4⋅9⋅4=144−144=0
b)
f(x)=(1−4x)(4x+1)=(1−4x)(1+4x)=1−16x2=−16x2+1
Δ=02−4⋅(−16)⋅1=0+64=64
c)
f(x)=(x−3)(4+2x)=4x+2x2−12−6x=2x2−2x−12
Δ=(−2)2−4⋅2⋅(−12)= 4+96=100
d)
f(x)=(1−4x)2−(2x+1)2=(1−8x+16x2)−(4x2+4x+1)=
=1−8x+16x2−4x2−4x−1= 12x2−12x
Δ=(−12)2−4⋅12⋅0=144
e)
f(x)=−4(x−1)(2x+1)=−4(2x2+x−2x−1)=
=−4(2x2−x−1)=−8x2+4x+4
Δ=42−4⋅(−8)⋅4= 16+128=144
f)
f(x)=3x2−3(x−1)=3x2−3x+3=31x2−x+1
Δ=(−1)2−4⋅31⋅1=1−34=−31