Próg słyszalności dźwięku o częstotliwości 1000 Hz wynosi... 4.84 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 3 Klasa
  3. Fizyka

Wypiszmy dane podane w zadaniu:

`I_0=10^-12\ W/m^2` 

`l=100\ m` 

 

Wiemy, że dla źródła punktowego fala przenosi energię przez powierzchnie S o wartości:

`S=4pir^2` 

gdzie dla naszego przypadlu mamy, że:

`r=l` 

Korzystamy z wzoru na moc:

`P=S*I`   

gdzie dla naszego przypadku mamy, że:

`I=I_0` 

Wówczas otrzymujemy, że:

`P=4pil^2 I_0`  

Podstawaiamy dane liczbowe do wzoru:

`P = 4*3,14*(100\ m)^2*10^-12\ W/m^2 = 12,56*10^4\ m^2*10^-12\ W/m^2 = 12,56*10^-8\ W =` 

`\ \ = 1,256*10^-7\ W ~~1,26*10^-7\ W`   

DYSKUSJA
Informacje
Z fizyką w przyszłość. Zbiór zadań. Zakres rozszerzony. Część 2
Autorzy: Agnieszka Bożek, Katarzyna Nessing, Jadwiga Salach
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zobacz także
Udostępnij zadanie