Matematyka

Matematyka wokół nas 2 (Podręcznik, WSiP)

Wykonaj odpowiednie pomiary na rysunkach i oblicz pole każdej siatki 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Wykonaj odpowiednie pomiary na rysunkach i oblicz pole każdej siatki

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
6
 Zadanie

 

 

`a)\ P_p=10*16=160\ mm^2` 

`\ \ \ P_b=2*1/2*10*14+2*1/2*16*13=` 

`\ \ \ \ \ \ \ =140+208=348\ mm^2` 

`\ \ \ P_c=160\ mm^2+348\ mm^2=508\ mm^2` 

 

 

`b)\ P_p=(15^2sqrt3)/4=` `(225sqrt3)/4\~~(225*1,73)/4=(389,25)/4~~97\ mm^2` 

`\ \ \ P_b=3*1/strike2^2*strike16^8*15=24*15=360\ mm^2` 

`\ \ \ P_c=97\ mm^2+360\ mm^2=457\ mm^2` 

 

 

`c)\ P_p=12*12=144\ mm^2` 

`\ \ \ P_b=2*1/2*12*17+2*1/2*12*12=204+144=` `348\ mm^2` 

`\ \ \ P_c=144\ mm^2+348\ mm^2=492\ mm^2`           

DYSKUSJA
user profile image
Loffcia

1

12 lutego 2018
Dzięki :)
Informacje
Autorzy: A. Drążek, E.Duvnjak, Ewa Kokiernak-Jurkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.


W systemie rzymskim do zapisania liczby używamy zdecydowanie mniej znaków niż w systemie dziesiątkowym.

Za pomocą 7 znaków (liter) : I, V, X, L, C, D i M jesteśmy w stanie ułożyć każdą liczbę naturalną od 1 do 3999.

Do każdego znaku przypisano inną wartość. 

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000 

oraz cyfry pomocnicze:

  • V = 5
  • L = 50 
  • D = 500


Zasady zapisywania liczb w systemie rzymskim
:

  1. Możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie.

    Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

    Przykłady:

    • VIII  `->`   `5+1+1+1=8` 

    • MMCCC  `->`   `1000+1000+100+100+100=2300` 

  2. W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości.

    W takim jednak przypadku od wartości większej liczby odejmujemy wartość mniejszej liczby.

    Przykłady:

    • IX  `->`   `10-1=9` 

    • CD  `->`   `500-100=400` 

  3. Gdy liczby (znaki) są ustawione od największej do najmniejszej to wówczas dodajemy ich wartości.

    Przykłady:

    • MMDCLVII  `->`   `1000+1000+500+100+50+5+1+1=2657`   

    • CXXVII  `->`   `100+10+10+5+1+1=127`   

 

Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.).

Początkowo zapisywano liczby za pomocą pionowych kresek I, II, III, IIII, IIIII, ... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e.

W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy. Pod koniec tej epoki zaczęto coraz częściej używać cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb.

System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Zobacz także
Udostępnij zadanie