Matematyka

Matematyka z plusem 2 (Zbiór zadań, GWO)

Oblicz długość boku kwadratu, którego przekątna ma długość a) 5√ 2 4.58 gwiazdek na podstawie 19 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Oblicz długość boku kwadratu, którego przekątna ma długość a) 5√ 2

26
 Zadanie

27
 Zadanie

28
 Zadanie
29
 Zadanie
30
 Zadanie
31
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Skoro przekątna kwadratu wyraża się wzorem `d=asqrt(2)` , gdzie a jest długością boku kwadratu, to

`a=(d)/(sqrt(2)` . Stusujemy ten wzór do każdego z poniższych przykładów.

a) `a=(d)/(sqrt(2))=(5sqrt(2))/(sqrt(2))=5`

b)  `a=(d)/(sqrt(2))=(0,7sqrt(2))/(sqrt(2))=0,7`

c) `a=(d)/(sqrt(2))=((5sqrt(2))/(2))/(sqrt(2))=(5sqrt(2))/(2)*(1)/(sqrt(2))=(5)/(2)`

d) `a=(d)/(sqrt(2))=(3)/(sqrt(2))=(3sqrt(2))/(2)`

e) `a=(d)/(sqrt(2))=((1)/(3))/(sqrt(2))=(1)/(3)*(1)/(sqrt(2))=(1)/(3sqrt(2))=(sqrt(2))/(3*2)=sqrt(2)/6`

f) `a=(d)/(sqrt(2))=(12)/(sqrt(2))=(12sqrt(2))/(2)=6sqrt(2)`

 

DYSKUSJA
user profile image
Maciej

12 grudnia 2017
dzieki!!!
user profile image
Adrian

12 listopada 2017
dzięki!!!
Informacje
Matematyka z plusem 2
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Zobacz także
Udostępnij zadanie