Matematyka

Czy wykonany z kartonu kwadrat o boku 20 cm można przykryć kartonowym okręgiem o średnicy 28 cm 4.64 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Czy wykonany z kartonu kwadrat o boku 20 cm można przykryć kartonowym okręgiem o średnicy 28 cm

28
 Zadanie

29
 Zadanie

30
 Zadanie
31
 Zadanie
32
 Zadanie
33
 Zadanie
34
 Zadanie
35
 Zadanie
36
 Zadanie

Musimy sprawdzić, jaki maksymalnie kwadrat da się wpisać w okrąg i jaki ma on bok. W okrąg o średnicy 28 cm można wpisać kwadrat, którego przekątna wynosi właśnie 28cm. Bok kwadratu jest zatem równy:

Bok a kwadratu, jaki można wpisać w okrąg, jest mniejszy niż bok kwadratu, który musimy przykryć. Nie da się zatem przykryć kwadratu o boku 20 cm kartonowym okręgiem o średnicy 28 cm.

DYSKUSJA
klasa:
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135378
Autor rozwiązania
user profile

Marek

1236

Korepetytor

Wiedza
Proste, odcinki i kąty

Najprostszymi figurami geometrycznymi są: punkt, prosta, półprosta i odcinek.

  1. Punkt – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić go sobie jako nieskończenie małą kropkę lub ślad po wbitej cienkiej szpilce. Punkty oznaczamy wielkimi literami alfabetu.

    punkt
     
  2. Prosta – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić ją sobie jako niezwykle długą i cienką, naprężona nić lub ślad zgięcia wielkiej kartki papieru.

    Możemy też powiedzieć, że prosta jest figurą geometryczną złożoną z nieskończenie wielu punktów. Prosta jest nieograniczona, czyli nie ma ani początku ani końca. Proste oznaczamy małymi literami alfabetu.
     

    prosta

    Jeżeli punkt A należy do prostej a, to mówimy, że prosta a przechodzi przez punkt A.

    prosta-punkty

    $$A∈a$$ (czyt.: punkt A należy do prostej a); $$B∈a$$; $$C∉a$$ (czyt.: punkt C nie należy do prostej a); $$D∉a$$

    Przez jeden punkt można poprowadzić nieskończenie wiele prostych.

    prosta-przechodzaca-przez-punkty

    Przez dwa różne punkty A i B można poprowadzić tylko jedną prostą. Prostą przechodzącą przez dwa różne punkty A i B oznaczamy prostą AB.
     
  3. Półprosta – jedna z dwóch części prostej, na które punkt dzieli tę prostą, wraz z tym punktem. Inaczej mówiąc półprosta to część prostej ograniczona z jednej strony punktem, który jest jej początkiem.
     

    polprosta
     
  4. Odcinek – Jeżeli dane są dwa różne punkty A i B należące do prostej, to zbiór złożony z punktów A i B oraz z tych punktów prostej AB, które są zawarte między punktami A i B, nazywamy odcinkiem AB.


    odcinekab

    Punkty A i B nazywamy nazywamy końcami odcinka. Końce odcinków oznaczamy wielkimi literami alfabetu,natomiast odcinek możemy oznaczać małymi literami.
     
  5. Łamana – jest to figura geometryczna, będąca sumą skończonej liczby odcinków. Inaczej mówiąc, łamana to figura zbudowana z odcinków w taki sposób, że koniec jednego odcinka jest początkiem następnego odcinka.


    lamana
     

    Odcinki, z których składa się łamana nazywamy bokami łamanej, a ich końce wierzchołkami łamanej.
     

    • Jeśli pierwszy wierzchołek łamanej pokrywa się z ostatnim, to łamaną nazywamy zamkniętą.

      lamana-zamknieta
       
    • Jeśli pierwszy wierzchołek nie pokrywa się z ostatnim, to łamana nazywamy otwartą.

      lamana-otwarta
 
Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.

    Przykłady: `3/8, \ \ \ 23/36, \ \ \ 1/4, \ \ \ 0/5` 

  2. Ułamek niewłaściwy – ułamek, którego licznik jest większy od mianownika lub jemu równy. Ułamek niewłaściwy ma zawsze wartość większą od 1 lub równą 1.

    Przykłady:  `15/7, \ \ \ 3/1, \ \ \ 129/5, \ \ \ 17/17` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom