🎓 Wykaż, że funkcja f jest parzysta. - Zadanie 8.169: Matematyka 1. Poziom podstawowy i rozszerzony. Po gimnazjum - strona 231
Przedmiot:
Matematyka
Wybrana książka:
Matematyka 1. Poziom podstawowy i rozszerzony. Po gimnazjum (Zbiór zadań, OE Pazdro)
Klasa:
I liceum
Strona 231

Funkcję liczbową f nazywamy funkcją parzystą wtedy i tylko wtedy, gdy dla każdej liczby x należącej do dziedziny funkcji f liczba -x również należy do dziedziny tej funkcji oraz spełniona jest równość f(-x)=f(x).


a) Określamy dziedzinę funkcji:

 

Dziedziną funkcji jest zbiór symetryczny względem osi OY, więc pierwszy warunek definicji jest spełniony.

Sprawdzamy, że funkcja jest parzysta:

Zadanie premium

Pozostała część rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
Komentarze
Informacje o książce
Wydawnictwo:
OE Pazdro
Rok wydania:
2016
Autorzy:
Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
ISBN:
9788375940794
Inne książki z tej serii:
Autor rozwiązania
Dagmara
39263

Nauczyciel

Z wykształcenia matematyk. W wolnym czasie lubię programować. Trenuję wspinaczkę.