Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Prosto do matury 2. Zakres podstawowy (Podręcznik, Nowa Era)

Dany jest zbiór ... 4.63 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

 

Mamy funkcję postaci `f(x)=(2x)/(x-5)`. Określamy dziedzinę tej funkcji,

pamiętając ,że mianownik ułamka nie może być równy `0`.

`x-5!=0 \ \ \ \ \ \ \ \ |+5` 

`x!=5`

Do dziedziny tej funkcji nie należy liczba `5`, czyli  `D_f=RR "\" {5}`


Obliczamy wartości funkcji `f`  dla argumentów `-1, \ 0, \ 3/2`.  

Należy pamiętać, że `5` nie należy do dziedziny funkcji, więc nie obliczamy wartości dla tej liczby. 

 

`f(-1)=(2*(-1))/(-1-5)=(-2)/(-6)=(-1)/(-3)=1/3`,

`f(0)=(2*0)/(0-5)=0/-5=0`,

`f(3/2)=(strike2^1*3/strike2_1)/(3/2-5)=3/-3,5=30/-35=6/-7=-6/7`

DYSKUSJA
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9878326725906
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dziedzina

Jest to zbiór możliwych x jakich będziemy używać w funkcji. Czyli patrząc „poziomo” jest to ta część osi X dla której znajdziemy punkt. Zaznaczę dziedzinę najpierw graficznie. Można ją łatwo wyznaczyć metodą prostokąta, który ma zawierać końcówki wykresu. Oś x w prostokącie lub obok prostokąta wyznacza dziedzinę.

Jak to wygląda na wykresie?

wyk2
 

Czerwona linia odcięta niebieskimi wyznacza nam dziedzinę zatem dziedzina to:

$$D=<-6;4>$$  

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom