Matematyka

Przekształć przez symetrię względem początku ... 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Gdy wykres funkcji  przekształcimy przez symetrię względem początku układu współrzędnych,

czyli punktu to otrzymamy wykres funkcji .    

Zatem, przekształćmy w ten sposób wykres funkcji 

 

Funkcja  przekształcona przez symetrię względem początku układu współrzędnych, 

ma postać

 .

 

Narysujmy teraz wykresy tych funkcji.

 

           
           

 

Obrazem punktu  w symetrii środkowej względem punktu początku układu współrzędnych

jest punkt .

  

  

  

  

  

Thumb 3.10.

DYSKUSJA
klasa:
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326725906
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Symetria względem punktu

Symetria względem punktu to odbicie obrazu względem punktu.

Dwie figury są symetryczne względem punktu, jeśli jedną z nich otrzymujemy, obracając drugą z figur wokół danego punktu o 180°. 


Przykłady:


  • wzgledempunktu

  • wzgledempunktu2
Przekształcanie wykresu funkcji
W tym temacie zajmiemy się kilkoma przekształceniami wykresu dowolnych funkcji.
Najpierw na podstawie wykresu $$y=f(x)$$ narysujmy wykres $$y = |f(x)|$$. Jak to zrobić?

Zastanówmy się, co tak naprawdę zrobiliśmy nakładając wartość bezwzględną na wartość funkcji. Jedyne punkty, które ulegają zmianie, to te, które znajdują się pod osią x - są one odbite symetrycznie względem tej prostej.

1
rys 1.1 $$f1(x) = (x-2)(x+3)(x-5)(x+10) $$

2
rys 1.2 $$|f1(x)|$$


3
rys 2.1 $$f1(x) = (x-2)(x+2)/(x+3)(x-5)$$

4
rys 2.2 $$|f1(x)|$$



5
rys 3.1 $$f1(x) = 1/x + 5$$


6
rys 3.2 $$|f1(x)|$$


Drugim przekształceniem jest przemnożenie argumentu funkcji przez jakąś stałą $$C$$. Co się wtedy dzieje? Można na to spojrzeć w ten sposób: jeśli wcześniej funkcja osiągała wartość $$y$$ w punkcie $$x$$, to teraz osiąga tę wartość w punkcie $$x/C$$, czyli w argumencie $$C$$ razy bliższym punktu $$(0,0)$$. Skoro dzieje się tak z każdym punktem wykresu, to całość jest tak jakby "ściśnięta" $$C$$ razy (albo "rozciągnięta", bo jeśli $$C$$ < $$1$$, to $$x/C$$ jest dalej niż $$x$$.).

Ponadto jeśli mnożymy przez stałą mniejszą od zera, wykres odbija się symetrycznie względem prostej $$y=0$$ - dość jasne, bo po ujemne argumenty stają się dodatnie, a dodatnie ujemne.

7
rys 4.1 $$f1(x) = (x-2)(x+3)(x-5)(x+10)$$

8
rys 4.2 $$f1(4×x)$$



9
rys 5.1 $$f1(x) = (x-2)(x+2)/(x+3)(x-5)$$

10
rys 5.2 $$f1({1}/{2}×x)$$



11
rys 6.1 $$f1(x) = 1/x + 5$$

12
rys 6.2 $$f1(-3×x)$$


Ostatnie przekształcenie, które omówimy, to przemnożenie wartości funkcji przez stałą $$C$$. Każdy punkt idzie więc $$C$$ razy wyżej lub niżej, a z tego wynika, że cała funkcja jest "rozciągnięta" (albo ściśnięta - jak w poprzednim przykładzie) - tyle, że pionowo, w osi y.

Oczywiście jeśli mnożymy przez stałą mniejszą od zera, wykres odbija się symetrycznie względem prostej $$x=0$$ - dość jasne, bo po ujemne wartości stają się dodatnie, a dodatnie ujemne.

13
rys 7.1 $$f1(x) = (x-2)(x+3)(x-5)(x+10)$$

14
rys 7.2 $$4×f1(x)$$



15
rys 8.1 $$f1(x) = (x-2)(x+2) / (x+3)(x-5)$$

16
rys 8.2 $$0.5 × f1(x)$$



17
rys 9.1 $$f1(x) = 1/x + 5$$

18

rys 9.2 $$(-2)×f1(x)$$

 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom