Matematyka

Drut długości 2 m ma być podzielony na dwie części 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Oznaczmy część drutu, z której ma powstać ramka kwadratowa, jako x, wtedy na część prostokątną zostaje 2-x. 

Oczywiście te długości muszą być dodatnie, więc zapiszmy założenia: 

 

 

 

Bok kwadratu ma więc długość:

   (drut długości x dzielimy na 4 równe odcinki)

 

Zapiszmy pole kwadratu:

 

 

 

Boki prostokąta mają pozostać w stosunku 2:3, czyli 2 krótsze boki to 2 razy po 2 części,

razem 4 części oraz 2 dłuższe boki to 2 razy po 3 części, razem 6 części, czyli łącznie 4+6=10 części.

Jedna część ma więc długość:

 

 

Zatem krótszy bok prostokąta ma długość (2 części):

 

 

I zapiszmy jeszcze, jaką długość ma dłuższy bok prostokąta:

 

 

Zapiszmy pole prostokąta:

   

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
ISBN: 9788375940800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wielokrotności

Wielokrotność liczby otrzymamy mnożąc tę liczbę przez kolejne liczby naturalne. 

Uwaga!!!

0 jest wielokrotnością każdej liczby naturalnej. 

Każda liczba naturalna jest wielokrotnością liczby 1. 


Przykłady
:

  • wielokrotności liczby 4 to: 
    • 0, bo  `0*4=0` 
    • 4, bo  `1*4=4`  
    • 8, bo  `2*4=8`  
    • 12, bo  `3*4=12`  
    • 16, bo  `4*4=16`  
    • 20, bo  `5*4=20` , itd.  
       
  • wielokrotności liczby 8 to:
    • 0, bo  `0*8=0`  
    • 8, bo  `1*8=8`  
    • 16, bo  `2*8=16`  
    • 24, bo  `3*8=24`  
    • 32, bo  `4*8=32`  
    • 40, bo  `5*8=40`, itd.  
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom