Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Liczy się matematyka 3 (Podręcznik, WSiP )

Wykaż, że różnica kwadratów dwóch kolejnych... 4.86 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Dwie kolejne liczby naturalne nieparzyste możemy zapisać w postaci: `2n+1,\ 2n+3,` 

gdzie  `n` jest dowolną liczbą naturalną.

Zapiszmy różnicę kwadratów tych liczb i ja przekształćmy:

`(2n+3)^2-(2n+1)^2=4n^2+12n+9-(4n^2+4n+1)=` 

`=4n^2+12n+9-4n^2-4n-1=8n+8=8(n+1)` 

Przedstawiliśmy różnicę kwadratów dwóch kolejnych liczb nieparzystych jako iloczyn

liczb `8``n+1,` co dowodzi, że dana różnica jest podzielna przez `8.`  

 

DYSKUSJA
Informacje
Autorzy: Adam Makowski, Tomasz Masłowski, Anna Toruńska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Graniastosłupy

Graniastosłup składa się z dwóch równoległych do siebie podstaw oraz ścian bocznych w kształcie równoległoboków.

  Zobacz w programie GeoGebra

 

graniastoslup

Graniastosłupy dzielimy na graniastosłupy proste, pochyłe oraz prawidłowe.

  1. Graniastosłup prosty to taki, w którym krawędzie boczne są prostopadłe do podstawy. Ściany boczne są prostokątami.

  2. Graniastosłup pochyły to taki, w którym krawędzie boczne nie są prostopadłe do podstawy. Ściany boczne są równoległobokami.

  3. Graniastosłup prawidłowy to taki, który ma w podstawie wielokąt foremny. Ściany boczne są przystającymi równoległobokami.

Objętość graniastosłupa:

$$V=P_p×H$$

$$V$$ -> objętość graniastosłupa

$$P_p$$ -> pole podstawy

$$H$$ -> wysokość graniastosłupa

 

Pole powierzchni całkowitej graniastosłupa:

$$P_c=2P_p+P_b$$

$$P_c$$ -> pole powierzchni całkowitej graniastosłupa

$$P_p$$ -> pole podstawy

$$P_b$$ -> pole powierzchni bocznej (suma pól wszystkich ścian bocznych)

 

W graniastosłupach są trzy różne odcinki: przekątna podstawy, przekątna ściany bocznej oraz przekątna graniastosłupa.

 
Walec, stożek, kula
  1. Walec

    Walec powstaje w wyniku obrotu prostokąta dookoła prostej zwanej osią obrotu.

      Zobacz w programie GeoGebra

    Walec
  2. Stożek

    Stożek powstaje w wyniku obrotu trójkąta wokół osi obrotu, stanowiącej jego wysokość.

      Zobacz w programie GeoGebra

    Stożek
  3. Kula

    Kula powstaje w wyniku obrotu półkola dookoła prostej zawierającej średnicę tego półkola. Pole powierzchni kuli nazywane jest sferą.

      Zobacz w programie GeoGebra
    Kula
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom