Uzasadnij, że suma czterech kolejnych liczb naturalnych... - Zadanie 21: Liczy się matematyka 3 - strona 234
Matematyka
Wybierz książkę
Uzasadnij, że suma czterech kolejnych liczb naturalnych... 4.84 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Cztery kolejne liczby naturalne nieparzyste możemy zapisać w postaci:

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Adam Makowski, Tomasz Masłowski, Anna Toruńska
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302161087
Autor rozwiązania
user profile

Dagmara

14700

Nauczyciel

Wiedza
Walec, stożek, kula
  1. Walec

    Walec powstaje w wyniku obrotu prostokąta dookoła prostej zwanej osią obrotu.

      Zobacz w programie GeoGebra

    Walec
  2. Stożek

    Stożek powstaje w wyniku obrotu trójkąta wokół osi obrotu, stanowiącej jego wysokość.

      Zobacz w programie GeoGebra

    Stożek
  3. Kula

    Kula powstaje w wyniku obrotu półkola dookoła prostej zawierającej średnicę tego półkola. Pole powierzchni kuli nazywane jest sferą.

      Zobacz w programie GeoGebra
    Kula
 
Ostrosłupy

Ostrosłup składa się z jednej podstawy, ścian bocznych i wierzchołka ostrosłupa. Punkt na podstawie, na który pada wysokość nazywamy spodkiem wysokości.

  Zobacz w programie GeoGebra

 

ostroslup

Ostrosłup, który ma w podstawie wielokąt foremny nazywamy ostrosłupem prawidłowym.

Ostrosłup prawidłowy trójkątny nosi również nazwę czworościan foremny. Wszystkie jego ściany są w kształcie trójkątów równobocznych.

Objętość ostrosłupa:

$V=1/3 P_p×H$

$V$ -> objętość ostrosłupa

$P_p$ -> pole podstawy

$H$ -> wysokość ostrosłupa

 

Pole powierzchni całkowitej ostrosłupa:

$P_c=P_p+P_b$

$Pc$ -> pole powierzchni całkowitej

$P_p$ -> pole podstawy

$P_b$ -> pole powierzchni bocznej (suma pól wszystkich ścian bocznych)

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2955ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5448WIADOMOŚCI
NAPISALIŚCIE806KOMENTARZY
komentarze
... i7960razy podziękowaliście
Autorom