Matematyka

Matematyka na czasie! 3 (Podręcznik, Nowa Era )

Ile krawędzi ma ostrosłup o 12 ścianach? 4.75 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Ostrosłup o `12` ścianach ma w podstawie jedenastokąt, więc ma `22` krawędzie.

Prawidłowa odpowiedź to `"C."`    

DYSKUSJA
user profile image
Paulina

10 marca 2018
Dziękuję!
user profile image
Kamila

11 grudnia 2017
dzieki
Informacje
Autorzy: Karolina Wej, Wojciech Babiański, Ewa Szmytkiewicz, Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Ostrosłupy

Ostrosłup składa się z jednej podstawy, ścian bocznych i wierzchołka ostrosłupa. Punkt na podstawie, na który pada wysokość nazywamy spodkiem wysokości.

  Zobacz w programie GeoGebra

 

ostroslup

Ostrosłup, który ma w podstawie wielokąt foremny nazywamy ostrosłupem prawidłowym.

Ostrosłup prawidłowy trójkątny nosi również nazwę czworościan foremny. Wszystkie jego ściany są w kształcie trójkątów równobocznych.

Objętość ostrosłupa:

$$V=1/3 P_p×H$$

$$V$$ -> objętość ostrosłupa

$$P_p$$ -> pole podstawy

$$H$$ -> wysokość ostrosłupa

 

Pole powierzchni całkowitej ostrosłupa:

$$P_c=P_p+P_b$$

$$Pc$$ -> pole powierzchni całkowitej

$$P_p$$ -> pole podstawy

$$P_b$$ -> pole powierzchni bocznej (suma pól wszystkich ścian bocznych)

 
Siatka ostrosłupa

Siatki ostrosłupów to przedstawienie na płaszczyźnie wszystkich ścian ostrosłupa. Pole powierzchni całkowitej ostrosłupa to pole powierzchni jego siatki. Pole boczne to pole powierzchni wszystkich ścian bocznych.

siatkaostroslupa

Siatka graniastosłupa składa się z podstawy i ścian bocznych. Pole powierzchni całkowitej to suma pola podstawy i pól ścian bocznych.

$$P_c=P_p+P_b $$
$$ P_c $$ -> pole powierzchni całkowitej
$$ P_p $$ -> pole podstawy
$$ P_b $$ -> pole powierzchni ścian bocznych
 
Zobacz także
Udostępnij zadanie