Najprostszymi figurami geometrycznymi są: punkt, prosta, półprosta i odcinek.
Punkt – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić go sobie jako nieskończenie małą kropkę lub ślad po wbitej cienkiej szpilce. Punkty oznaczamy wielkimi literami alfabetu.
Prosta – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić ją sobie jako niezwykle długą i cienką, naprężona nić lub ślad zgięcia wielkiej kartki papieru.
Możemy też powiedzieć, że prosta jest figurą geometryczną złożoną z nieskończenie wielu punktów. Prosta jest nieograniczona, czyli nie ma ani początku ani końca. Proste oznaczamy małymi literami alfabetu.
Półprosta – jedna z dwóch części prostej, na które punkt dzieli tę prostą, wraz z tym punktem. Inaczej mówiąc półprosta to część prostej ograniczona z jednej strony punktem, który jest jej początkiem.
Odcinek – Jeżeli dane są dwa różne punkty A i B należące do prostej, to zbiór złożony z punktów A i B oraz z tych punktów prostej AB, które są zawarte między punktami A i B, nazywamy odcinkiem AB.
Łamana – jest to figura geometryczna, będąca sumą skończonej liczby odcinków. Inaczej mówiąc, łamana to figura zbudowana z odcinków w taki sposób, że koniec jednego odcinka jest początkiem następnego odcinka.
Odcinki, z których składa się łamana nazywamy bokami łamanej, a ich końce wierzchołkami łamanej.
Jeśli pierwszy wierzchołek łamanej pokrywa się z ostatnim, to łamaną nazywamy zamkniętą.
Jeśli pierwszy wierzchołek nie pokrywa się z ostatnim, to łamana nazywamy otwartą.
Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.
Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.
Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.
Przykład:
Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:
$$3/5=9/{15}={27}/{45}=...$$Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.
Przykład:
Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:
$$8/{16}=4/8=2/4=1/2$$