Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 2001 (Zbiór zadań, WSiP)

Ponumeruj czynności prowadzące do rozwiązania poniższego zadania... 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Ponumeruj czynności prowadzące do rozwiązania poniższego zadania...

11
 Zadanie
12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie

18
 Zadanie

2 Podstawienie za `pi` liczby `3` i obliczenie objętości kulki w centymetrach sześciennych

3 Obliczenie dokładnej masy ołowianej kulki.

4 Obliczenie przybliżonej masy ołowiu.

1 Wyznaczenie długości promienia kulki w centymetrach.

DYSKUSJA
Informacje
Autorzy: Anna Dubiecka, Barbara Dubiecka-Kruk, Zbigniew Góralewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Ola

17616

Nauczyciel

Wiedza
Graniastosłupy

Graniastosłupem nazywamy wielościan, w którym dwie ściany zwane podstawami są równoległymi wielokątami przystającymi, natomiast ściany boczne są równoległobokami.
Wysokość graniastosłupa to odcinek prostopadły do jego podstaw, którego końce zawierają się w płaszczyznach na których leżą te podstawy.

Typowe graniastosłupy:

img01

Graniastosłupy mogą być:
 
  • Proste - wtedy ich wszystkie ściany boczne to prostokąty, a podstawa to dowolny wielokąt
  • Prawidłowe - wtedy to graniastosłupy proste, które mają w podstawie wielokąt foremny (wszystkie boki równej długości) np. trójkąt równoboczny, kwadrat itp.

Typowym graniastosłupem prostym jest prostopadłościan - graniastosłup o podstawie prostokąta.

img02

d jest przekątną prostopadłościanu. Jak policzyć taką przekątną? Skorzystamy z tego, że w graniastosłupie prostym ściany są prostopadłe do podstaw, więc trójkąt zaznaczony na niebiesko jest prostokątny:

img03

Zatem kłania nam się twierdzenie Pitagorasa i to dwukrotnie, ponieważ musimy go użyć do d, ale także do przekątnej podstawy, nazwijmy ją $$e$$. Wtedy:
$$a^2+b^2=e^2$$ dla trójkąta o bokach $$a$$, $$b$$, $$e$$ (który jest prostokątny bo podstawa to prostokąt)
$$e^2+c^2=d^2$$ (dla niebieskiego trójkąta)

Wystarczy teraz podstawić $$e^2$$ z pierwszego równania do drugiego, żeby dostać:
$$a^2+b^2+c^2=d^2$$

Typowym graniastosłupem prawidłowym jest sześcian, czyli graniastosłup o podstawie kwadratu, którego wysokość jest równa krawędzi podstawy.

img04

Przekątną sześcianu liczymy identycznie jak w prostopadłościanie.

Przejdźmy teraz do Pola i Objętości.
 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom