Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 2001 (Zbiór zadań, WSiP)

Cena 1 kg bananów była o 2,10 zł wyższa od ceny 1 kg jabłek. Cenę bananów... 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Cena 1 kg bananów była o 2,10 zł wyższa od ceny 1 kg jabłek. Cenę bananów...

5
 Zadanie

6
 Zadanie

7
 Zadanie
8
 Zadanie
9
 Zadanie
10
 Zadanie

`x` - cena bananów przed obniżką

`y` -cena jabłek przed podwyżką


`{(x=y+2,1),(0,8x=1,25y+0,6):}` 


`0,8*(y+2,1)=1,25y+0,6` 

`0,8y+1,68=1,25y+0,6 \ \ |-1,25y` 

`-0,45y+1,68=0,6 \ \ |-1,68` 

`-0,45y=-1,08` 

`y=2,4` 


`x=y+2,1` 

`x=2,4+2,1` 

`x=4,5` 

`{(x=4,5),(y=2,4):}` 


Obliczmy cenę bananów po obniżce:

`0,8x=0,8*4,5=3,6 \ "[zł]"` 


Obliczmy cenę jabłek po podwyżce:

`1,25y=1,25*2,4=3 \ "[zł]"` 


Odp.: 1 kg bananów kosztuje teraz 3,6 zł, a 1 kg jabłek kosztuje teraz 3 zł.

DYSKUSJA
Informacje
Autorzy: Anna Dubiecka, Barbara Dubiecka-Kruk, Zbigniew Góralewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Ola

17618

Nauczyciel

Wiedza
Liczby naturalne

Liczby naturalne to liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... .

Zbiór wszystkich liczb naturalnych oznaczamy symbolem N.

Możemy zapisać: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...}.


Pojęcie liczby naturalnej pojawiło się w związku z liczeniem przedmiotów i ustalaniem kolejności.


W zbiorze liczb naturalnych wyróżniamy między innymi liczby parzyste i nieparzyste, a także liczby pierwsze i złożone.

  • Liczba parzysta – liczba podzielna przez 2 (inaczej mówiąc jest to wielokrotność liczby 2).

    Liczbami parzystymi są więc liczby: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20...

    Każdą liczbę parzystą możemy przedstawić w postaci iloczynu liczby 2 i pewnej liczby naturalnej.

    Zatem jeśli n jest liczbą parzystą, to istnieje liczba naturalna k taka, że: `n = 2*k` 

  • Liczba nieparzysta – liczba naturalna, która nie jest parzysta.

    Liczbami nieparzystymi są więc liczby: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, …

    Każdą liczbę nieparzystą n możemy przedstawić w postaci `n = 2*k+1` , gdzie k jest liczbą naturalną.

  • Liczba pierwsza – liczba naturalna większa od 1, mająca tylko dwa dzielniki: 1 i samą siebie.

    Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23,...

  • Liczba złożona - liczba naturalna nie będąca liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki. 

    Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...


Uwaga

Liczby 0 i 1 nie są liczbami pierwszymi ani liczbami złożonymi.

Pojęcie procentu i promila

Procent (symbol %) oznacza setną część danej wielkości, czyli procent to inny sposób zapisania ułamka o mianowniku 100.


Warto zapamiętać:

`100% = 1`  (całość)

`75%=3/4`   (trzy czwarte) 

`50%=1/2`   (połowa)

`25%=1/4`   (ćwierć)

`20%=1/5`   (jedna piąta)   

`10%=1/10`   (jedna dziesiąta)

`150%=1 1/2`   (półtora) 


Zapamiętaj!!!

W praktyce procent nigdy nie występuje samodzielnie, jest on zawsze ułamkiem pewnej konkretnej wielkości.



Promil (symbol `permille`) oznacza tysięczną część danej wielkości, czyli promil to inny sposób zapisania ułamka o mianowniku 1000. 

`n \ permille=n/1000` 


Przykłady:

`1 \ permille=1/1000`    

`2,5 \ permille=2,5/1000=25/(10 \ 000)` 

`36 \ permille=36/1000` 



Uwaga!!!
Zauważmy, że `1 \ permille = 1/1000`, a  `1%=1/100` . Oznacza to, że `1 \ permille` to 10 razy mniej niż `1%`.  

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom