Zbiór A jest zbiorem naturalnych potęg liczby 5 nie - Zadanie 1: Matematyka poznać, zrozumieć 1. Zakres podstawowy - strona 23
Matematyka
Wybierz książkę
Zbiór A jest zbiorem naturalnych potęg liczby 5 nie 4.6 gwiazdek na podstawie 10 opinii
  1. Technikum
  2. 1 Klasa
  3. Matematyka
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do zadania undefined
Gość

7 sierpnia 2017
Mam pewna zagwozdkę z tym zadaniem. W treści pisze, "...jest zbiorem naturalnych potęg liczby 5 nie większych niż 125". Rozumuje tu w ten sposób, że to liczbe 5 należy spotęgować, tak aby zmieścic się w limicie < 125. I tu pada moje pytanie, skąd wzięła sie ta " 1 " w zbiorze A? Najniższa potęga liczby 5, czyli 5 do potęgi 1wszej = 5, a nie 1. Byłbym bardzo wdzięczny za wyjaśnienie mi tego
opinia do zadania undefined
Monika

28174

8 sierpnia 2017
@Gość Cześć, najniższa potęga naturalna to 0, a dowolna liczba (różna od 0) podniesiona do potęgi 0 jest równa 1. Stąd w zbiorze A znajduje się 1, ponieważ 5 do potęgi 0 jest równe 1. Pozdrawiamy!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Alina Przychoda, Zygmunt Łaszczyk
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302127199
Autor rozwiązania
user profile

Monika

28174

Nauczyciel

Wiedza
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $ 1,57+7,6=?$
    dodawanie-ulamkow-1 

    $1,57+7,6=8,17 $

Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $1/{10}= 0,1$
  • $2/{100}= 0,02$
  • ${15}/{100}= 0,15$
  • $3/{1000}= 0,003$
  • ${25}/{10}= 2,5$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2789ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5532WIADOMOŚCI
NAPISALIŚCIE745KOMENTARZY
komentarze
... i7635razy podziękowaliście
Autorom