Matematyka

Matematyka 2 Pazdro. Zbiór zadań do liceów i techników. Poziom podstawowy (Zbiór zadań, OE Pazdro)

Funkcje liniowe f oraz g są opisane wzorami 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Gość

28-11-2017
Dzięki za pomoc :)
user profile image
Gość

27-11-2017
Dziękuję!
user profile image
Gość

25-10-2017
dzięki :)
user profile image
Gość

04-10-2017
Dziękuję :)
user profile image
Gość

29-09-2017
dzieki :)
Informacje
Matematyka 2 Pazdro. Zbiór zadań do liceów i techników. Poziom podstawowy
Autorzy: Marcin Kurczab, Elżbieta Kurczab i Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Prostopadłościan

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.
  • Każdy prostopadłościan ma 6 ścian - 4 ściany boczne i 2 podstawy, 8 wierzchołków i 12 krawędzi.
  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.
  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.
  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.

Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c. Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

Prostopadłościan - długości

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.

Prostopadłościan, którego wszystkie ściany są kwadratami nazywamy sześcianem.Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie