Matematyka

Wyznacz wskazane wielkości 4.53 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

`a)`

`k=7n \ \ \ \ |:7`

`n=k/7`

 

 

`b)`

`a=k+6\ \ \ \ |-6`

`k=a-6`

 

 

`c)`

`z=7-y\ \ \ \ |+y`

`z+y=7\ \ \ \ |-z`

`y=7-z`

 

 

`d)`

`d=a+bc\ \ \ \ |-a`

`d-a=bc\ \ \ \|:b`

`c=(d-a)/b`

 

`bne0`

Zakładamy, że b jest różne od 0, ponieważ nie wolno dzielić przez 0.

 

 

`e)`

`x=2k+1\ \ \ \ |-1`

`x-1=2k \ \ \ \ |:2`

`k=(x-1)/2`

 

 

`f)`

`2k=7n+5\ \ \ \ \|-5`

`2k-5=7n\ \ \ \ |:7`

`n=(2k-5)/7`

DYSKUSJA
user profile image
michalpachvp

24-04-2017
wy lepiej tłumaczycie niż moja pani od matematyki tkanks
user profile image
Agnieszka

13021

25-04-2017
@michalpachvp Cześć, od tego jesteśmy aby wam pomagać:) każdy zadowolony użytkownik to dla nas dodatkowa motywacja do pracy :) Pozdrawiamy!
user profile image
Krzysztof Bańkowski

08-04-2017
dzieki
user profile image
Krzysztof Bańkowski

08-04-2017
dzięki temu zrozumiałem przekstałcanie wzorów dzięki :)
user profile image
Agnieszka

13021

08-04-2017
@Krzysztof Bańkowski Cześć,cieszymy się że jesteś zadowolony z rozwiązania, każdy zadowolony użytkownik to dla nas dodatkowa motywacja do pracy :) Pozdrawiamy!
Informacje
Matematyka z plusem 1
Autorzy: M.Dobrowolska
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zobacz także
Udostępnij zadanie