Trójkąt prostokątny ma przyprostokątne długości a i b - Zadanie 22: Policzmy to razem 2 - strona 190
Matematyka
Wybierz książkę
Trójkąt prostokątny ma przyprostokątne długości a i b 4.4 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Skoro ten trójkąt jest prostokątny o przyprostokątnych a, b oraz przeciwprostokątnej c, to z twierdzenia Pitagorasa możemy zapisać: 

 

 

Dodatkowo pole wynosi 6, więc: 

 

 

 

Uproścmy najpierw wyrażenie korzystając ze wzorów skróconego mnożenia (mnożymy stopniowo pierwsze dwa nawiasy i ostatnie dwa nawiasy): 

 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do zadania undefined
Monika

10 lutego 2019
Dziękuję!!!!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $r.2$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $AB⊥CD$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $AB∥CD$.

    odicnkirownolegle
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2633ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5781WIADOMOŚCI
NAPISALIŚCIE764KOMENTARZY
komentarze
... i7699razy podziękowaliście
Autorom