Uzasadnij, że jeżeli do liczby czterocyfrowej dodamy liczbę powstałą z jej cyfr - Zadanie 21: Policzmy to razem 2 - strona 190
Matematyka
Wybierz książkę
Uzasadnij, że jeżeli do liczby czterocyfrowej dodamy liczbę powstałą z jej cyfr 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Uzasadnij, że jeżeli do liczby czterocyfrowej dodamy liczbę powstałą z jej cyfr

14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie
18
 Zadanie
19
 Zadanie
20
 Zadanie

21
 Zadanie

22
 Zadanie
23
 Zadanie

Zwróć uwagę, że każdą liczbę czterocyfrową postaci abcd można zapisać jako 1000a+100b+10c+d (np. 4567=4∙1000+5∙100+6∙10+7)

 

Nasza liczba czterocyfrowa: 

 

Liczba powstała po przestawieniu cyfr: 

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $0,34÷10= 0,034$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $311,25÷100= 3,1125$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $53÷1000= 0,053$ ← przesuwamy przecinek o trzy miejsca w lewo
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $5•5=5^2 $, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $7•7•7=7^3$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $3•3•3•3•3=3^5 $, czytamy: „trzy do potęgi piątej”

    $2•2•2•2•2•2•2=2^7 $, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2633ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5781WIADOMOŚCI
NAPISALIŚCIE764KOMENTARZY
komentarze
... i7699razy podziękowaliście
Autorom