Historia

Czym różniła się demokracja ateńska 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Historia

Różnice pomiędzy demokracją ateńską a współczesną:

  • Współczesne odmiany demokracji posiadają najczęściej charakter pośredni - obywatele biorą udział w rządzeniu i decydowaniu o najważniejszych sprawach poprzez wybieranie tzw. organów przedstawicielskich, czyli parlamentu. W Atenach istniała demokracja bezpośrednia - każdy obywatel miał prawo udziału w Zgromadzeniu Ludowym i decydowania o sprawach państwa.
  • W Atenach raz w roku odbywał się ostracyzm - mieszkańcy polis mogli skazać na 10 lat wygnania osobę podejrzaną o chęć wprowadzenia rządów tyrańskich. Obecnie, w procesie sądowym każdemu oskarżonemu przysługuje prawo do obrońcy oraz odwołania od wyroku. 
  • Współcześnie - prawa wyborcze posiadają zarówno kobiety, jak i mężczyźni. W Atenach prawa polityczne posiadali tylko mężczyźni (ukończone 20 lat), których ojciec i matka byli mieszkańcami Aten. Praw politycznych nie posiadały kobiety, dzieci, metojkowie i niewolnicy.
  • Dzisiejsze państwa demokratyczne cechuje: pluralizm polityczny i ideologiczny oraz trójpodział władzy (władza wykonawcza, władza ustawodawcza, władza sądownicza).
DYSKUSJA
Informacje
Historia I
Autorzy: Tomasz Małkowski, Jacek Rześniowiecki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie