W windzie na sprężynie... 4.71 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka

Dane:

 

 

 

 

Szukane:

 

Rozwiązanie:

Na ciężarek będzie działała siła ciężkości oraz siła sprężystości sprężyny. Siłę ciężkości przedstawiamy za pomocą wzoru:

 

gdzie Fg jest siłą ciężkości, m jest masą ciała, g jest przyspieszeniem ziemskim. Siłę sprężystości sprężyny przedstawiamy wzorem:

 

gdzie k jest współczynnikiem sprężystości sprężyny, x jest wektorem wydłużenia się tej sprężyny. Minus we wzorze oznacza, że siła sprężystości ma zwrot przeciwny do zwrotu wektora wydłużenia (skrócenia) ciała. Winda ruszyła w górę z przyspieszeniem , czyli siła bezwładności działająca na ciężarek będzie miała przeciwny zwrot i będzie równoważyła wypadkową sił sprężystości i ciężkości. Jeżeli układ porusza się ruchem zmiennym to na ciała znajdujące się w tym układzie działa siła bezwładności, która wyraża się wzorem:

 

gdzie m jest masą ciała, a jest przyspieszeniem, z jakim porusza się układ. Znak minus we wzorze oznacza, że zwrot siły bezwładności jest przeciwny do zwrotu wektora przyspieszenia tego układu. Z tego wynika, że współczynnik sprężystości będzie miał postać::

 

 

 

 

Podstawiamy dane liczbowe do wzoru:

 

Odp.: Współczynnik sprężystości tej sprężyny wynosi  

DYSKUSJA
klasa:
Informacje
Autorzy: Barbara Budny
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788376808918
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom