Narysuj siatkę graniastosłupa prostego, którego podstawą jest - Zadanie 10: Matematyka z plusem 2 - strona 73
Matematyka
Wybierz książkę
Narysuj siatkę graniastosłupa prostego, którego podstawą jest 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Narysuj siatkę graniastosłupa prostego, którego podstawą jest

6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie

10
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a)

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do zadania undefined
Daniel

13 grudnia 2018
dzięki
opinia do odpowiedzi undefined
Karol

31 stycznia 2018
dzięki!!!!
klasa:
II gimnazjum
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Czworokąty i ich kąty wewnętrzne

Czworokąt to wielokąt o czterech bokach (a tym samym o czterech wierzchołkach i o czterech kątach). Przykłady czworokątów: prostokąt, kwadrat, romb, równoległobok, trapez.

Suma miar kątów wewnętrznych dowolnego czworokąta. Dowolny czworokąt można podzielić przy pomocy przekątnej na dwa trójkąty. Wiemy, że suma miar kątów wewnętrznych dowolnego trójkąta jest równa 180°.

Zatem suma miar kątów czworokąta jest równa $2•180°= 360°$. Suma miar kątów wewnętrznych dowolnego czworokąta jest równa 360°.

Liczby dodatnie i ujemne

  Przypomnienie

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

os


Liczby naturalne to liczby 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... Zbiór wszystkich liczb naturalnych oznaczamy symbolem N.

Możemy zapisać: N = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...}
 

Liczby dodatnie są to liczby większe od zera, czyli na osi liczbowej leżą po prawej stronie zera. Liczby dodatnie zapisujemy ze znakiem + (plus), np. +2, +5 lub bez znaku, np. 2, 5. Czym liczba dodatnia leży bliżej zera, tym jest mniejsza, np. $1$ < $5$.
 

Liczby ujemne są to liczby mniejsze od zera, czyli na osi liczbowej leżą po lewej stronie zera. Liczby ujemne zapisujemy ze znakiem – (minus), np. -2, -7. Czym liczba ujemna jest bliżej zera, tym jest większa, np. $−44$ < $−5$
 

  Zapamiętaj

Każda liczba dodatnia jest większa od każdej liczby ujemnej, np. $5$ > $-5$, $7$ > $-92$. Zero jest większe od każdej liczby ujemnej, np. 0 > $-8$, $0$ > $-1743$. Zero nie jest ani liczbą dodatnią, ani ujemną.

Liczby przeciwne są to takie dwie liczby, których suma wynosi 0. Zapis $a+b=0$ oznacza, że a i b to liczby przeciwne.

Przykłady:

  • Liczbą przeciwną do 4 jest -4.
  • Liczbą przeciwną do -25 jest 25.
  • Liczbą przeciwną do 0 jest 0.


Liczby przeciwne leżą na osi liczbowej w tej samej odległości od zera po przeciwnych stronach.

liczby-przeciwne


Liczby całkowite to liczby naturalne oraz liczby do nich przeciwne. Zbiór wszystkich liczb całkowitych oznaczamy symbolem C.
Możemy zapisać: C = { ..., -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, ...}


Przykłady interpretacji liczb ujemnych i dodatnich:

  • + 5° -> 5 stopni powyżej zera
  • - 5° -> 5 stopni poniżej zera
  • + 100 zł -> gotówka (kapitał)
  • - 100 zł -> dług (kredyt)
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom