Matematyka

Michał i jego siostra Asia mają w sumie 28 lat. 11 lat temu Michał był 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Michał i jego siostra Asia mają w sumie 28 lat. 11 lat temu Michał był

17
 Zadanie

18
 Zadanie
19
 Zadanie
20
 Zadanie
21
 Zadanie
22
 Zadanie
23
 Zadanie
24
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

x- wiek Michała

y - wiek Asi

Zapisujemy układ równań i rozwiązujemy go metodą podstawiania.

`{(x+y=28),(x-11=2*(y-11)):}`

`{(x+y=28),(x-11=2y-22):}`

 `{(x=28-y),(x-11=2y-22):}`

 `{(x=28-y),(28-y-11=2y-22):}`

`{(x=28-y),(17+22=2y+y):}`

`{(x=28-y),(39=3y):}`

`{(x=28-y),(y=13):}`

`{(x=28-13=15),(y=13):}`

Michał ma 15 lat, Asia ma 13 lat, zatem Michał jest teraz od niej o 2 lata starszy.

Prawdiłowa jest odpowiedź D.

Odpowiedź:

D

DYSKUSJA
Informacje
Matematyka z plusem 2
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Przeliczanie jednostek – centymetry na metry i kilometry

W praktyce ważna jest umiejętność przeliczania 1 cm na planie lub mapie na ilość metrów lub kilometrów w terenie.

  • 1 m = 100 cm
  • 1 cm = 0,01 m
  • 1 km = 1000 m = 100000 cm
  • 1 m = 0,001 km
  • 1 cm = 0,00001 km

Przykłady na przeliczanie skali mapy:

  • skala 1:2000 mówi nam, że 1 cm na mapie to 2000 cm w rzeczywistości, czyli 20 m policzmy: 2000 cm = 2000•0,01= 20 m
  • skala 1:30000 mówi nam, że 1 cm na mapie to 30000 cm w rzeczywistości, czyli 300 m policzmy: 30000 cm = 30000•0,01= 300 m
  • skala 1:500000 mówi nam, że 1 cm na mapie to 500000 cm w rzeczywistości, czyli 5 km policzmy: 500000 cm = 500000•0,00001= 5 km
  • skala 1:1000000 mówi nam, że 1 cm na mapie to 1000000 cm w rzeczywistości, czyli 10 km policzmy: 1000000 cm = 1000000•0,00001= 10 km
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie