Matematyka

Oblicz objętość stożka powstałego w wyniku obrotu: 4.53 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Oblicz objętość stożka powstałego w wyniku obrotu:

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

`V=1/3pir^2*H`

a) `H=asqrt3/2=2sqrt3`

`V=1/3*pi*2^2*2sqrt3=8/3sqrt3pi`

b) `H^2=12^2-4^2=144-16=128`

`H=` `sqrt128cm`

`V=1/3pi*4^2sqrt128=1/3*16*4sqrt8pi=64/3*2sqrt2pi=128/3sqrt2picm^3`

DYSKUSJA
Informacje
Matematyka z plusem 3
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Zobacz także
Udostępnij zadanie