Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Na rysunkach przedstawiono graniastosłupy prawidłowe. Oblicz długość odcinków 4.53 gwiazdek na podstawie 19 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Na rysunkach przedstawiono graniastosłupy prawidłowe. Oblicz długość odcinków

14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie

18
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) x obliczamy z tw. Pitagorasa:

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

y to wysokość podstawy:

rownanie matematyczne

rownanie matematyczne

b) z to przekątna kwadratu:

rownanie matematyczne

t obliczamy z tw.Pitagorasa:

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

w to przekątna ściany bocznej:

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

c) p=2*2=4

r obliczamy z tw. Pitagorasa:

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

DYSKUSJA
user avatar
Jagoda

10 stycznia 2018
Dzieki za pomoc :):)
user avatar
Angelika

2 stycznia 2018
Dzięki :):)
user avatar
Daniel

14 listopada 2017
dzięki!!!
user avatar
Jacek

29 września 2017
Dzięki za pomoc :)
user avatar
Aleksander

27 września 2017
dzięki!
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201247
Autor rozwiązania
user profile

Jacek

1705

Nauczyciel

Wiedza
Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom