Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Stosunek dwóch liczb jest równy 3 : 7. Jeśli większą z nich zmniejszymy o 25% 4.67 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Stosunek dwóch liczb jest równy 3 : 7. Jeśli większą z nich zmniejszymy o 25%

6
 Zadanie

7
 Zadanie

8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie
12
 Zadanie
1
 Zadanie
2
 Zadanie

`"x - mniejsza liczba"`

`"y - większa liczba"`

`(100-25)%"y"=0,75"y - większa liczba po zmniejszeniu o"\ 25%`

`(100+16 2/3)%"x"=116 2/3%"x"=350/3*1/100"x"=350/300"x - mniejsza liczba"`

 

`"Z warunków zadania mamy układ równań:"`

`{("x"/"y"=3/7), ((350/300"x")/(0,75"y")=2/3):}`

`"Mamy:"`

`{(7"x"=3"y"), (3*350/300"x"=2*0,75"y"):}`

`"Po przekształceniu:"`

`{("x"=3/7"y"), (3,5"x"=1,5"y"):}`

`"Podstawiamy pierwsze równanie do drugiego i otrzymujemy:"`

`3,5*(3/7"y")=1,5"y"`

`3/2"y"=1,5"y"`

`1,5"y"=1,5"y"`

`"y może być dowolne, różne od zera." "W takim razie x jest również dowolne i również różne od zera."`

Odpowiedź:

Liczby mogą być dowolne, ale różne od zera.

DYSKUSJA
user avatar
Antoni

8 marca 2018
Dziękuję!
Informacje
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302135347
Autor rozwiązania
user profile

Marek

1175

Korepetytor

Wiedza
Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom