Matematyka

Matematyka wokół nas 3 (Zbiór zadań, WSiP)

Narysuj siatkę walca, wiedząc, że: a) promień podstawy wynosi 3 cm, a wysokość jest 2.5 razy większa 4.55 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Narysuj siatkę walca, wiedząc, że: a) promień podstawy wynosi 3 cm, a wysokość jest 2.5 razy większa

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie

`"Siatka walca wygląda następująco:"`

`"a)"`

`"promień podstawy walca (czyli koła) wynosi"\ 3\ "cm, a wysokość wynosi"\ 7,5\ "cm, czyli krótszy bok prostokąta."`

`"Długość dłuższego boku prostokąta jest równa długości okręgu (czyli"\ 2pi"r)."`

 

`"b)"`

`"średnica koła wynosi"\ 5\ "cm, wysokość (krótszy bok prostokąta) stanowi"\ 280%\ "długości promienia koła, czyli"\ 2,8*2,5=7\ "cm."`

 

`"c)"`

`"wysokość wynosi"\ 6\ "cm, a promień podstawy wynosi"\ 6/(2,4)=2,5\ "cm."`

DYSKUSJA
user profile image
Kuba

26 października 2017
Dzięki!!!
Informacje
Matematyka wokół nas 3
Autorzy: Podobińska Barbara, Przetacznik-Dąbrowa Teresa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Zobacz także
Udostępnij zadanie