Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka z plusem 8 (Zbiór zadań, GWO)

a) Przez jaką liczbę należy podzielić 18, żeby otrzymać resztę 3? 4.38 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

a) Przez jaką liczbę należy podzielić 18, żeby otrzymać resztę 3?

15
 Zadanie
16
 Zadanie
17
 Zadanie
18
 Zadanie

19
 Zadanie

20
 Zadanie
21
 Zadanie
22
 Zadanie
23
 Zadanie

a) Wiemy, że

`18:b=c \ "r." \ 3` 

gdzie `b, c` - liczby naturalne

zatem

`18=b*c+3` 

`b*c=18-3` 

`b*c=15` 

zatem liczba `b` może być równa `3, 5` lub `15`   

Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Marcin Braun, Jacek Lech, Marek Pisarski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209670
Autor rozwiązania
user profile

Ola

17619

Nauczyciel

Wiedza
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $$r.2$$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Liczby pierwsze i liczby złożone

Liczba pierwsza – liczba naturalna większa od 1, mająca tylko dwa dzielniki: 1 i siebie samą.
Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23,..

  Uwaga

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

Liczba złożona - liczba nie będąca liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki.
Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18,...

  Uwaga

Uwaga! Liczby 1 i 0 nie są liczbami złożonymi.

  Przypomnienie

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:
10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom