Matematyka

Podkreśl tę z wymienionych liczb, która ... 4.75 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Podkreśl tę z wymienionych liczb, która ...

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

  

 

Podkreślamy liczbę 1,5. 

 

   

 

Podkreślamy liczbę 17.  

 

 

 

Podkreślamy liczbę 17.  

 

 

 

Podkreślamy liczbę -4. 

 

    

  

Dodatkowo zauważmy, że:

  

czyli:

 

Podkreślamy liczbę -2. 

 

 

 

Podkreślamy liczbę 1.

 

 

DYSKUSJA
user avatar
Patryk Latocha

18 września 2018
Dzięki za pomoc!
user avatar
Daniel

8 września 2018
Dzieki za pomoc
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska, Marta Jucewicz, Marcin Karpiński
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209663
Autor rozwiązania
user profile

Justyna

15468

Nauczyciel

Wiedza
Mnożenie i dzielenie pierwiastków

W przypadku mnożenia i dzielenia pierwiastków wygląda to znacznie łatwiej. Pierwiastki mnożymy metodą "rozbicia i składania". Polega ona na tym, że liczbę pod pierwiastkową rozbijamy tak, aby jedną (lub więcej) z rozbitych liczb wyłączyć przed znak pierwiastka.

Przykłady mnożenia pierwiastków:

  • $$√2×√3=√{2×3}=√6$$
  • $$√20×√5=√{20×5}=√{100}=10 $$

Przykłady dzielenia pierwiastków:

  • $${√{24} }/{√6}=√{24÷6}=√4=2$$
  • $${√{63} }/ {√7}=√{63÷7}=√9=3$$
Pojęcie pierwiastka

Pierwiastkiem kwadratowym z nieujemnej liczby a nazywamy taką nieujemną liczbę b, której kwadrat jest równy liczbie a.

Pierwiastek kwadratowy możemy nazwać również pierwiastkiem drugiego stopnia

Symbolicznie możemy zapisać to: 

`sqrt{a}=b, \ \ \ "bo" \ \ \ b^2=a`  


Pierwiastkiem sześciennym z liczby a nazywamy taką liczbę b, której sześcian (trzecia potęga) jest równy liczbie a.

Pierwiastek sześcienny możemy nazwać także pierwiastkiem trzeciego stopnia.  

Symbolicznie możemy zapisać to: 

`root{3}{a}=b,  \ \ \ "bo" \ \ \ b^3=a`  


Przykłady

  • `sqrt{25}=5, \ \ \ "bo" \ \ \ 5^2=25` 
     
  • `sqrt{81}=9, \ \ \ "bo" \ \ \ 9^2=81`    

  • `root{3}{27}=3, \ \ \ "bo" \ \ \ 3^3=27`  

  • `root{3}{64}=4, \ \ \ "bo" \ \ \ 4^3=64` 



Wykonując działania na pierwiastkach warto pamiętać o kilku własnościach:

  1. Dla `a>=0` mamy: 

    `sqrt{a^2}=a`   

    `(sqrt{a})^2=a` 

    `sqrt{a}*sqrt{a}=a` 

  2. Dla dowolnej liczby `a`  mamy: 

    `root{3}{a^3}=a` 

    `(root{3}{a})^3=a`   

    `root{3}{a}*root{3}{a}*root{3}{a}=a`  

 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom